Skip to main content

Magnesium Alloys

  • Chapter
  • First Online:
Aerospace Materials and Material Technologies

Part of the book series: Indian Institute of Metals Series ((IIMS))

Abstract

This chapter gives an overview of magnesium alloys with the emphasis on aerospace applications. The strengthening mechanisms, physical metallurgy principles, effects of alloying elements, conventional processing techniques, recent advancements in alloy development and processing are briefly discussed in the following sections. The mechanical properties, corrosion behaviour of aerospace castings and wrought alloys are presented and commented upon in detail. Recent trends in corrosion protection techniques and applications in national and international aerospace projects are presented at the end.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Edgar RL (2000) Magnesium alloys and their application. Kainer, K.U., Pub., France, p 3

    Google Scholar 

  2. Avedesian MM, Baker H (eds) (1999) Magnesium and magnesium alloys. ASM International (The Materials Information Society), Materials Park, OH, USA

    Google Scholar 

  3. Buch FV, Lietzau J, Mordike BL, Pisch A, Schmid-Fetzer R (1999) Development of Mg–Sc–Mn alloys. Mater Sci Eng A 263:1

    Article  Google Scholar 

  4. Bach FW, Schaper M, Jaschik C (2003) Influence of lithium on hcp magnesium alloys. Mater Sci Forum 419–422:1037–1042

    Article  Google Scholar 

  5. Bronfin B, Aghion E, Buch FV, Schumann S, Katzir M (2006) US Patent, No. 7041179

    Google Scholar 

  6. Hollrigl-Rosta F, Just E (1980) Magnesium in the volkswagen. In: Light metals age, vol 8, pp 22–29

    Google Scholar 

  7. Busk RS (1987) Magnesium products design. Marcel Dekker

    Google Scholar 

  8. Meredith PC (1969) QE22A-T6: a versatile magnesium alloy for high performance aerospace applications. Magnesium Elektron Ltd

    Google Scholar 

  9. Magnesium Casting Alloys, Datasheet: 440, Magnesium Elektron, Manchester, UK

    Google Scholar 

  10. Elektron Wrought Alloys, Datasheet: 441, Magnesium Elektron, Manchester, UK

    Google Scholar 

  11. Elektron Magnesium Alloys, Magnesium Elektron Ltd, 1983

    Google Scholar 

  12. Elektron EQ21A: Another casting alloy developed by magnesium electron Ltd. Bulletin 464, Magnesium Elektron Ltd., 1984

    Google Scholar 

  13. WE54, A new magnesium casting alloy for use up to 300 °C. Bulletin 466, Magnesium Elektron Ltd., 1985

    Google Scholar 

  14. Magnesium Elektron Ltd., Manchester, U.K., 1993

    Google Scholar 

  15. Yang Z, Li JP, Zhang JX, Lorimer GW, Robson J (2008) Review on research and development of magnesium alloys. Acta Metall Sin (Engl Lett) 21(5):313–328

    Google Scholar 

  16. Suman C (1991) Society of automotive engineers. SAE technical paper No. 910416. Warrendale, PA

    Google Scholar 

  17. Luo AA (2004) Magnesium technology 2004. TMS, Warrendale, PA, p 329

    Google Scholar 

  18. Lyon P, King JF, Nuttall (1996) In: Magnesium conference, proceedings 3rd International. Lorimer, G.W., Pub., London, p 99

    Google Scholar 

  19. Lyon P (2004) New magnesium alloy for aerospace and speciality applications. The Minerals, Metals & Materials Society, pp 311–315

    Google Scholar 

  20. Bronfin B, Aghion E (2001) Magnesium technology 2001. Hryn, J.N. Pub., Warrendale, p 127

    Google Scholar 

  21. Rokhlin LL (2003) Magnesium alloys containing rare earth metals-structure and properties. Taylor & Francis Pub., Moscow, p 197

    Google Scholar 

  22. Yang Z, Li JP, Guo YC, He F, Xia F, Liang MX (2008) Plastic deformation and dynamic recrystallization behaviors of Mg–5Gd–4Y–0.5Zn–0.5Zr alloy. Mater Sci Eng, A 485(1–2):487–491

    Article  Google Scholar 

  23. Apps PJ, Karimzadeh H, King JF, Lorimer GW (2003) Phase compositions in magnesium-rare earth alloys containing yttrium, gadolinium or dysprosium. Scr Mater 48(5):475–481

    Article  Google Scholar 

  24. Nie JF, Muddle BC (2000) Characterisation of strengthening precipitate phases in a Mg–Y–Nd alloy. Acta Mater 48:1691

    Article  Google Scholar 

  25. Kainer KU (ed) (1999) Magnesium—alloys and technologies. Wiley-VCH GmBH & Co, KGaA, Weinheim

    Google Scholar 

  26. Doege E, Droder K (1997) Processing of Mg sheet metals by deep drawing and stretch forming. Materiaux Tech 7–8:19–23

    Google Scholar 

  27. Kittilsen B, Pinfield P (1992) Magnesium extrusion—recent developments. In: DGM-Tagung, proceedings, pp 85–92

    Google Scholar 

  28. Białobrzeski A, Saja K, Hubner K (2007) Ultralight magnesium-lithium alloys. Arch Foundry Eng 7:11–16

    Google Scholar 

  29. Slooff FA, Zhou J, Duszczyk J, Katgerman L (2007) Constitutive analysis of wrought magnesium alloy Mg–Al4–Zn1. Scr Mater 57(8):759–762

    Article  Google Scholar 

  30. Wu L, Jain A, Brown DW, Stoica GM, Agnew SR, Clausen B, Fielden DE, Liaw PK (2008) Twinning–detwinning behavior during the strain-controlled low-cycle fatigue testing of a wrought magnesium alloy, ZK60A. Acta Mater 56(4):688–695

    Article  Google Scholar 

  31. Riemelmoser FO, Kuhlein M, Kilian H, Kettner M, Hanzi AC, Uggowitzer PJ (2007) Micro-alloyed wrought magnesium for room-temperature forming. Adv Eng Mater 9(9):799–802

    Article  Google Scholar 

  32. Kobayashi T, Koike J (2003) Anomalous activity of nonbasal dislocations in AZ31 Mg alloy at room temperature. Mater Sci Forum 419–422:231–236

    Article  Google Scholar 

  33. Huang ZW, Yoshida Y (2003) Microstructures and tensile properties of wrought magnesium alloys processed by ECAE. Mater Sci Forum 419–422:243

    Article  Google Scholar 

  34. Matsubara K, Miyahara Y, Makii K, Horita Z, Langdon TG (2003) Using extrusion and ECAP processing to achieve low temperature and high strain rate superplasticity. Mater Sci Forum 419:497

    Article  Google Scholar 

  35. Munroe RA (1966) Magnesium-Lithium allot lightens electronic packaging. Met. Prog. 90(1):89

    Google Scholar 

  36. Kawamura Y, Hayashi K, Masumoto T, Inoue A (2001) Rapidly solidified powder metallurgy Mg(97)Zn(1)Y(2) alloys with excellent tensile yield strength above 600 MPa. Mater Trans 42(7):1172–1176

    Article  Google Scholar 

  37. Inoue A, Kawamura Y, Matsushita M (2001) Novel hexagonal structure and ultrahigh strength of magnesium solid solution in the mg–zn–y system. J Mater Res 16:1894–1900

    Article  Google Scholar 

  38. Gjestland H, Nussbaum G, Regazzoni G, Lohne O, Bauger O (1991) Stress-relaxation and creep behaviour of some rapidly solidified Mg alloys. Mat Sci Eng A 134:1197–1200

    Article  Google Scholar 

  39. Stechens RI, Ogrevic VV (1990) Fatigue of magnesium alloys. Annu Rev Mater Res 20:141–177

    Article  Google Scholar 

  40. Bamberger M, Dehm G (2008) Trends in the development of new Mg alloys. Annu Rev Mater Sci 38:505–533

    Article  Google Scholar 

  41. Miller WK (1991) Creep of die cast AZ91 Mg at room temperature and low stress. Met Trans A 22A:873–877

    Article  Google Scholar 

  42. Guo KW (2010) A review of magnesium/magnesium alloys corrosion and its protection. Recent Pat Corros Sci 2:13–21

    Article  Google Scholar 

  43. Rzychoń T, Michalska J, Kiełbus A (2007) Corrosion resistance of Mg–RE–Zr Alloys. J Achievements Mater Manuf Eng 21(1):51–54

    Google Scholar 

  44. Surface treatments for magnesium alloys in aerospace and defence, Datasheet: 256, Magnesium Elektron, Manchester, UK

    Google Scholar 

  45. Kannan MB, Dietzel W, Blawert C, Atrens A, Lyon P (2008) Stress corrosion cracking of rare-earth containing magnesium alloys ZE41, QE22 and Elektron 21 (EV31A) Compared with AZ80. Mater Sci Eng A Struct Mater 480:529–539

    Article  Google Scholar 

  46. Winzer N, Atrens A, Dietzel W, Raja VS, Song GL, Kainer KU (2008) Characterisation of stress corrosion cracking (SCC) of Mg-Al Alloys. Mater Sci Eng A Struct Mater 488:339–351

    Article  Google Scholar 

  47. Makar GL, Kruger J, Sieradzki K (1993) Stress corrosion cracking of rapidly solidified magnesium aluminum alloys. Corr Sci 34:1311–1323, 1325–1342

    Google Scholar 

  48. Bhuiyan MS, Mutoh Y, Murai T, Iwakami S (2008) Corrosion fatigue behavior of extruded magnesium alloy AZ61 under three different corrosive environments. Int J Fatigue 30:1756–1765

    Article  Google Scholar 

  49. Nan ZY, Ishihara S, Goshima T (2008) Corrosion fatigue behavior of extruded magnesium alloy AZ31 in sodium chloride solution. Int J Fatigue 30:1181–1188

    Article  Google Scholar 

  50. Eliezer A, Gutman EM, Abramov E, Unigovski Y (2001) Corrosion fatigue of die-cast and extruded magnesium alloys. J Light Metals 1:179–186

    Article  Google Scholar 

  51. Eliezer A, Medlinsky O, Haddad J, Hamu GB (2008) Corrosion fatigue behavior of magnesium alloys under oil environments. Mater Sci Eng A Struct Mater 477:129–136

    Article  Google Scholar 

  52. Chong KZ, Shih TS (2003) Conversion-coating treatment for magnesium alloys by a permanganate-phosphate solution. Mater Chem Phys 80:191–200

    Article  Google Scholar 

  53. Ardelean H, Frateur I, Zanna S, Atrens A, Marcus P (2009) Corrosion protection of AZ91 magnesium alloy by anodizing in niobium and zirconium-containing electrolytes. Corr Sci 51:3030–3038

    Article  Google Scholar 

  54. Shi ZM, Song GL, Atrens A (2006) Corrosion resistance of anodised single-phase Mg Alloys. Surf Coat Technol 201:492–503

    Article  Google Scholar 

  55. Grundmeier G, Schmidt W, Stratmann M (2000) Corrosion protection by organic coatings: electrochemical mechanism and novel methods of investigation. Electrochem Acta 45:2515–2533

    Article  Google Scholar 

  56. Fedrizzi L, Andreatta F, Paussa L, Deflorian F, Maschio S (2008) Heat exchangers corrosion protection by using organic coatings. Prog Org Coat 63:299–306

    Article  Google Scholar 

  57. Liu ZM, Gao W (2006) The effect of substrate on the electroless nickel plating of Mg and Mg Alloys. Surf Coat Technol 200:3553–3560

    Article  Google Scholar 

  58. Hollstein F, Wiedemann R, Scholz J (2003) Characteristics of PVD coatings on AZ31 magnesium alloys. Surf Coat Technol 162:261–268

    Article  Google Scholar 

  59. Wan GJ, Maitz MF, Sun H, Li PP, Huang N (2007) Corrosion properties of oxygen plasma immersion ion implantation treated magnesium. Surf Coat Technol 201:8267–8272

    Article  Google Scholar 

  60. Choi J, Nakao S, Kim J, Ikeyama M, Kato T (2007) Corrosion protection of DLC coatings on magnesium alloy. Diam Relat Mater 16:1361–1364

    Article  Google Scholar 

  61. Ostrovsky I, Henn Y (2007) Present state and future of magnesium application in aerospace industry. In: International conference on new challenges in aeronautics. Moscow, 19–22 Aug 2007

    Google Scholar 

  62. Sadkov V, Laponov Y, Ageev V, Korovina N, Perspectives and conditions for Mg alloys application in “Tupolev” airplanes. In: Materials of the second international conference and exhibition, magnesium—broad horizons, conference CD: copies available from the chapter authors

    Google Scholar 

Download references

Acknowledgments

The information and data in this chapter are taken mainly from the ASM Handbook: Magnesium and Magnesium alloys, edited by M.M. Avedesian and H.Baker, ASM International, 1999, USA; the Source Book: Mg Alloys Technology, edited by C.G.K. Nair, V.Gopalkrishna, and E.S.Dwarakadasa, and published by the Non-Ferrous Metals Division and IIM Bangalore Chapter, India; and Magnesium Alloys and Technology, edited by K.U.Kainer, Wiley VCH GmBH & Co, Germany.

One of the authors (T Ram Prabhu) would like to thank Dr. K Tamilmani, DG (Aero), DRDO and Shri P Jayapal, Chief Executive (A), CEMILAC, DRDO for their constant encouragement and kind support. The authors are grateful to the editors, Dr. N Eswara Prasad and Dr. RJH Wanhill for the opportunity to contribute this book chapter and also for their numerous valuable suggestions in finalizing its contents.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Ram Prabhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Ram Prabhu, T., Vedantam, S., Singh, V. (2017). Magnesium Alloys. In: Prasad, N., Wanhill, R. (eds) Aerospace Materials and Material Technologies . Indian Institute of Metals Series. Springer, Singapore. https://doi.org/10.1007/978-981-10-2134-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2134-3_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2133-6

  • Online ISBN: 978-981-10-2134-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics