Manipulating Acoustic Wavefront with Metasurface of Inhomogeneous Impedance

  • Jiajun ZhaoEmail author
Part of the Springer Theses book series (Springer Theses)


This chapter establishes the framework of acoustic wavefront manipulation by resorting to the acoustic metasurface which has specific acoustic impedance (SAI) inhomogeneity and discontinuity, rather than the phase inhomogeneity in terms of wave propagation (Sundar et al., Opt Lett 34(3):374–376, 2009, [1], Yu et al., Science 334(6054):333–337, 2011, [2]). SAI is one of the acoustic properties of materials, which is comparably more possible to be controllable in reality than propagation phase. More specifically, we find out that the inhomogeneous SAI will generally give rise to one ordinary reflection \(p_{ro}\) and one extraordinary reflection \(p_{re}\), i.e., double reflections. Furthermore, the flat inhomogeneous SAI surface is able to switch on or off \(p_{ro}\) without the influence on its direction, but to tweak \(p_{re}\) in the manner of our proposed design principle: impedance-governed generalized Snell’s law of reflection (IGSL) in acoustics.


Surface Acoustic Wave Flat Interface Tube Array Double Reflection Specific Acoustic Impedance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    B. Sundar, A.C. Hamilton, J. Courtial, Fermat’s principle and the formal equivalence of local light-ray rotation and refraction at the interface between homogeneous media with a complex refractive index ratio. Opt. Lett. 34(3), 374–376 (2009)CrossRefGoogle Scholar
  2. 2.
    N. Yu, P. Genevet, M.A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, Z. Gaburro, Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334(6054), 333–337 (2011)CrossRefGoogle Scholar
  3. 3.
    J. Zhao, B. Li, Z. Chen, C.-W. Qiu, Manipulating acoustic wavefront by inhomogeneous impedance and steerable extraordinary reflection. Sci. Rep. 3, 2537 (2013)Google Scholar
  4. 4.
    X. Ni, N.K. Emani, A.V. Kildishev, A. Boltasseva, V.M. Shalaev, Broadband light bending with plasmonic nanoantennas. Science 335(6067), 427–427 (2012)CrossRefGoogle Scholar
  5. 5.
    D.T. Blackstock, Fundamentals of Physical Acoustics (Wiley, New York, 2000)Google Scholar
  6. 6.
    Y. Li, B. Liang, X. Tao, X.-F. Zhu, X.-Y. Zou, J.-C. Cheng, Acoustic focusing by coiling up space. Appl. Phys. Lett. 101(23), 233508 (2012)CrossRefGoogle Scholar
  7. 7.
    J. Renger, M. Kadic, G. Dupont, S.S. Aćimović, S. Guenneau, R. Quidant, S. Enoch, Hidden progress: broadband plasmonic invisibility. Opt. Express 18(15), 15757–15768 (2010)CrossRefGoogle Scholar
  8. 8.
    M. Kang, T. Feng, H.-T. Wang, J. Li, Wave front engineering from an array of thin aperture antennas. Opt. Express 20(14), 15882–15890 (2012)CrossRefGoogle Scholar
  9. 9.
    F. Aieta, P. Genevet, M.A. Kats, N. Yu, R. Blanchard, Z. Gaburro, F. Capasso, Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. Nano Lett. 12(9), 4932–4936 (2012)CrossRefGoogle Scholar
  10. 10.
    C. Zhang, T.J. Cui, Negative reflections of electromagnetic waves in a strong chiral medium. Appl. Phys. Lett. 91(19), 194101 (2007)CrossRefGoogle Scholar
  11. 11.
    D. Fattal, J. Li, Z. Peng, M. Fiorentino, R.G. Beausoleil, Flat dielectric grating reflectors with focusing abilities. Nat. Photonics 4(7), 466–470 (2010)CrossRefGoogle Scholar
  12. 12.
    J. Zhu, Y. Chen, X. Zhu, F.J. Garcia-Vidal, X. Yin, W. Zhang, X. Zhang, Acoustic rainbow trapping. Sci. Rep. 3, 1728 (2013)Google Scholar
  13. 13.
    S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, L. Zhou, Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Nat. Mater. 11(5), 426–431 (2012)CrossRefGoogle Scholar
  14. 14.
    S. Zhang, C. Xia, N. Fang, Broadband acoustic cloak for ultrasound waves. Phys. Rev. Lett. 106(2), 024301 (2011)CrossRefGoogle Scholar
  15. 15.
    D.-D. Dai, X.-F. Zhu, An effective gauge potential for nonreciprocal acoustics. Europhys. Lett. 102(1), 14001 (2013)CrossRefGoogle Scholar
  16. 16.
    Y. Li, B. Liang, Z.-M. Gu, X.-Y. Zou, J.-C. Cheng, Reflected wavefront manipulation based on ultrathin planar acoustic metasurfaces. Sci. Rep. 3, 2546 (2013)Google Scholar
  17. 17.
    Y. Li, X. Jiang, R.-Q. Li, B. Liang, X.-Y. Zou, L.-L. Yin, J.-C. Cheng, Experimental realization of full control of reflected waves with subwavelength acoustic metasurfaces. Phys. Rev. Appl. 2(6), 064002 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2016

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringNational University of SingaporeSingaporeSingapore

Personalised recommendations