• Jiajun ZhaoEmail author
Part of the Springer Theses book series (Springer Theses)


Engineering the wavefronts of both electromagnetic and acoustic waves has long captivated the increasing interest and popularity, such as cloaking, illusion, focusing, etc. Among various schemes proposed to manipulate the light, the generalized Snell’s law has recently been reformulated (Yu et al. Science 334(6054):333–337, 2011 [1]). This mechanism opens up new initiatives in realizing negative reflection and negative refraction, as well as other possibilities in optical wave engineering.


Piezoelectric Transducer Phase Antenna Array Binary Particle Swarm Optimization Focal Pattern Invisibility Cloak 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    N. Yu, P. Genevet, M.A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, Z. Gaburro, Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334(6054), 333–337 (2011)CrossRefGoogle Scholar
  2. 2.
    B. Sundar, A.C. Hamilton, J. Courtial, Fermat’s principle and the formal equivalence of local light-ray rotation and refraction at the interface between homogeneous media with a complex refractive index ratio. Opt. Lett. 34(3), 374–376 (2009)CrossRefGoogle Scholar
  3. 3.
    S. Larouche, D.R. Smith, Reconciliation of generalized refraction with diffraction theory. Opt. Lett. 37(12), 2391–2393 (2012)CrossRefGoogle Scholar
  4. 4.
    J. Zhao, Z.-Y. Tao, Fine-tuning of nonBragg bandgaps in axisymmetric ducts via arbitrary periodic walls. J. Sound Vib. 332(25), 6541–6551 (2013)CrossRefGoogle Scholar
  5. 5.
    X. Ni, N.K. Emani, A.V. Kildishev, A. Boltasseva, V.M. Shalaev, Broadband light bending with plasmonic nanoantennas. Science 335(6067), 427–427 (2012)CrossRefGoogle Scholar
  6. 6.
    M. Kang, T. Feng, H.-T. Wang, J. Li, Wave front engineering from an array of thin aperture antennas. Opt. Express 20(14), 15882–15890 (2012)CrossRefGoogle Scholar
  7. 7.
    F. Aieta, P. Genevet, M.A. Kats, N. Yu, R. Blanchard, Z. Gaburro, F. Capasso, Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. Nano Lett. 12(9), 4932–4936 (2012)CrossRefGoogle Scholar
  8. 8.
    L. Huang, X. Chen, H. Muhlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, S. Zhang, Dispersionless phase discontinuities for controlling light propagation. Nano Lett. 12(11), 5750–5755 (2012)CrossRefGoogle Scholar
  9. 9.
    P. Genevet, N. Yu, F. Aieta, J. Lin, M.A. Kats, R. Blanchard, M.O. Scully, Z. Gaburro, F. Capasso, Ultra-thin plasmonic optical vortex plate based on phase discontinuities. Appl. Phys. Lett. 100(1), 013101 (2012)CrossRefGoogle Scholar
  10. 10.
    N. Engheta, Antenna-guided light. Science 334(6054), 317–318 (2011)CrossRefGoogle Scholar
  11. 11.
    M. Born, E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, Cambridge, 1999)CrossRefGoogle Scholar
  12. 12.
    E. Hecht, Optik (McGraw-Hill, New York, 1987)Google Scholar
  13. 13.
    J. Achenbach, Wave Propagation in Elastic Solids (Elsevier, Amsterdam, 2012)Google Scholar
  14. 14.
    G. Clement, P. White, K. Hynynen, Enhanced ultrasound transmission through the human skull using shear mode conversion. J. Acoust. Soc. Am. 115(3), 1356–1364 (2004)CrossRefGoogle Scholar
  15. 15.
    J. Li, C. Chan, Double-negative acoustic metamaterial. Phys. Rev. E 70(5), 055602 (2004)CrossRefGoogle Scholar
  16. 16.
    Y. Lai, Y. Wu, P. Sheng, Z.-Q. Zhang, Hybrid elastic solids. Nat. Mater. 10(8), 620–624 (2011)CrossRefGoogle Scholar
  17. 17.
    F. Falcone, T. Lopetegi, M. Laso, J. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martin, M. Sorolla, Babinet principle applied to the design of metasurfaces and metamaterials. Phys. Rev. Lett. 93(19), 197401 (2004)CrossRefGoogle Scholar
  18. 18.
    S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, L. Zhou, Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Nat. Mater. 11(5), 426–431 (2012)CrossRefGoogle Scholar
  19. 19.
    X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, T. Zentgraf, Dual-polarity plasmonic metalens for visible light. Nat. Commun. 3, 1198 (2012)CrossRefGoogle Scholar
  20. 20.
    J. Hao, Y. Yuan, L. Ran, T. Jiang, J.A. Kong, C. Chan, L. Zhou, Manipulating electromagnetic wave polarizations by anisotropic metamaterials. Phys. Rev. Lett. 99(6), 063908 (2007)CrossRefGoogle Scholar
  21. 21.
    S.-J. Song, H.J. Shin, Y.H. Jang, Development of an ultra sonic phased array system for nondestructive tests of nuclear power plant components. Nucl. Eng. Des. 214(1), 151–161 (2002)CrossRefGoogle Scholar
  22. 22.
    S. Chatillon, G. Cattiaux, M. Serre, O. Roy, Ultrasonic non-destructive testing of pieces of complex geometry with a flexible phased array transducer. Ultrasonics 38(1), 131–134 (2000)CrossRefGoogle Scholar
  23. 23.
    S.W. Shin, A.R. Qureshi, J.-Y. Lee, C.B. Yun, Piezoelectric sensor based nondestructive active monitoring of strength gain in concrete. Smart Mater. Struct. 17(5), 055002 (2008)CrossRefGoogle Scholar
  24. 24.
    B. Jaffe, Piezoelectric Ceramics, vol. 3 (Elsevier, Amsterdam, 2012)Google Scholar
  25. 25.
    W. Liu, X. Ren, Large piezoelectric effect in pb-free ceramics. Phys. Rev. Lett. 103(25), 257602 (2009)CrossRefGoogle Scholar
  26. 26.
    E.-K. Kim, C.S. Park, W.Y. Chung, K.K. Oh, D.I. Kim, J.T. Lee, H.S. Yoo, New sonographic criteria for recommending fine-needle aspiration biopsy of nonpalpable solid nodules of the thyroid. Am. J. Roentgenol. 178(3), 687–691 (2002)CrossRefGoogle Scholar
  27. 27.
    J.E. Kennedy, High-intensity focused ultrasound in the treatment of solid tumours. Nat. Rev. Cancer 5(4), 321–327 (2005)CrossRefGoogle Scholar
  28. 28.
    E.A. Stewart, W.M. Gedroyc, C.M. Tempany, B.J. Quade, Y. Inbar, T. Ehrenstein, A. Shushan, J.T. Hindley, R.D. Goldin, M. David et al., Focused ultrasound treatment of uterine fibroid tumors: safety and feasibility of a noninvasive thermoablative technique. Am. J. Obstet. Gynecol. 189(1), 48–54 (2003)CrossRefGoogle Scholar
  29. 29.
    M.A. Averkiou, R.O. Cleveland, Modeling of an electrohydraulic lithotripter with the kzk equation. J. Acoust. Soc. Am. 106(1), 102–112 (1999)CrossRefGoogle Scholar
  30. 30.
    B.W. Drinkwater, P.D. Wilcox, Ultrasonic arrays for non-destructive evaluation: a review. NDT E Int. 39(7), 525–541 (2006)CrossRefGoogle Scholar
  31. 31.
    J. Wang, W. Chen, Q. Zhan, Engineering of high purity ultra-long optical needle field through reversing the electric dipole array radiation. Opt. Express 18(21), 21965–21972 (2010)CrossRefGoogle Scholar
  32. 32.
    M. Friese, T. Nieminen, N. Heckenberg, H. Rubinsztein-Dunlop, Optical alignment and spinning of laser-trapped microscopic particles. Nature 394(6691), 348–350 (1998)CrossRefGoogle Scholar
  33. 33.
    N.H. Gokhale, J.L. Cipolla, A.N. Norris, Special transformations for pentamode acoustic cloaking. J. Acoust. Soc. Am. 132(4), 2932–2941 (2012)CrossRefGoogle Scholar
  34. 34.
    A. Norris, A. Shuvalov, Elastic cloaking theory. Wave Motion 48(6), 525–538 (2011)CrossRefGoogle Scholar
  35. 35.
    D. Schurig, J. Mock, B. Justice, S.A. Cummer, J.B. Pendry, A. Starr, D. Smith, Metamaterial electromagnetic cloak at microwave frequencies. Science 314(5801), 977–980 (2006)CrossRefGoogle Scholar
  36. 36.
    A.N. Norris, Acoustic cloaking theory, in Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 464, pp. 2411–2434, The Royal Society (2008)Google Scholar
  37. 37.
    S. Zhang, C. Xia, N. Fang, Broadband acoustic cloak for ultrasound waves. Phys. Rev. Lett. 106(2), 024301 (2011)CrossRefGoogle Scholar
  38. 38.
    B.-I. Popa, L. Zigoneanu, S.A. Cummer, Experimental acoustic ground cloak in air. Phys. Rev. Lett. 106(25), 253901 (2011)CrossRefGoogle Scholar
  39. 39.
    V.M. García-Chocano, L. Sanchis, A. Díaz-Rubio, J. Martínez-Pastor, F. Cervera, R. Llopis-Pontiveros, J. Sánchez-Dehesa, Acoustic cloak for airborne sound by inverse design. Appl. Phys. Lett. 99(7), 074102 (2011)CrossRefGoogle Scholar
  40. 40.
    L. Sanchis, V. García-Chocano, R. Llopis-Pontiveros, A. Climente, J. Martínez-Pastor, F. Cervera, J. Sánchez-Dehesa, Three-dimensional axisymmetric cloak based on the cancellation of acoustic scattering from a sphere. Phys. Rev. Lett. 110(12), 124301 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2016

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringNational University of SingaporeSingaporeSingapore

Personalised recommendations