Skip to main content

Optison Albumin Microspheres in Ultrasound-Assisted Gene Therapy and Drug Delivery

  • Chapter
  • First Online:
Albumin in Medicine

Abstract

Optison™ (Perflutren Protein-Type A Microspheres Injectable Suspension, USP) is a sterile non-pyrogenic suspension of microspheres of human serum albumin with perflutren (also known as perfluoropropane). Optison microspheres are micrometre-sized gas-filled bubbles that have a shell consisting of human albumin. The size range is 2–4 μm in diameter and 95 % are less than 10 μm. This means that intravenously injected Optison™ may pass through the pulmonary capillary bed and access all parts of the systemic vasculature. The size distribution, shell properties and gas core provide a bubble that oscillates in response to and scatters ultrasound at frequencies useful for clinical imaging. The established use of Optison™ is in the field of echocardiography, where it provides echogenic contrast enhancement for suboptimal echocardiograms.

Optison™ is currently marketed in North America and Europe where researchers may gain access to the product for research and experimental use under their own institutional processes. One such experimental use that has shown promise is the use of ultrasound combined with a microbubble agent to induce transient changes to biological tissue with the aim of increasing delivery and penetration of therapeutic molecules. It has been known for decades that microbubbles can act as nucleation sites for a range of ultrasound-induced physical effects such as stable cavitation, inertial cavitation and jetting. These phenomena have been shown to have direct physical effects on biological membranes in the vicinity of the microbubble such as the creation of pores (sonoporation) which can persist for seconds up to several minutes depending on their size and the level of impact to the host cell. This approach has been applied as an alternative to viral vectors to address the significant challenge of delivering genetic material for anticancer and cardiovascular gene therapy. There are approximately 50 research papers on the use of Optison™ to enhance the transfection of oligonucleotides and plasmid DNA. This chapter will introduce Optison™ and its characteristics in the context of established use in diagnostic clinical imaging and experimental use in the delivery of therapeutic molecules. The methodology and results in the field of drug delivery and gene therapy will be reviewed and summarised in the context of effectiveness, potential for clinical translation and potential impact in medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Perfluoropropane is also known as perflutren and octafluoropropane, the chemical formula of which is C3F8.

  2. 2.

    Duty cycle, DC, is the percentage time that ultrasound transmission takes place during treatment. Therefore, DC of 100 % is continuous wave.

  3. 3.

    Mechanical index is a measure of ultrasound intensity. MI = peak negative pressure/square root of ultrasound centre frequency.

References

  • Alter J, Sennoga CA, Lopes DM, Eckersley RJ, Wells DJ (2009) Microbubble stability is a major determinant of the efficiency of ultrasound and microbubble mediated in vivo gene transfer. Ultrasound Med Biol 35:976–984

    Article  PubMed  Google Scholar 

  • Aoi A, Watanabe Y, Mori S, Takahashi M, Vassaux G, Kodama T (2008) Herpes simplex virus thymidine kinase-mediated suicide gene therapy using nano/microbubbles and ultrasound. Ultrasound Med Biol 34:425–434

    Article  PubMed  Google Scholar 

  • Averkiou M, Bruce M, Jensen S, Rafter P, Brock-Fisher T, Powers J (eds) (2004) Pulsing schemes for the detection of nonlinear echoes from contrast microbubbles. In: 9th European symposium on ultrasound contrast imaging, Rotterdam

    Google Scholar 

  • Azuma H, Tomita N, Sakamoto T, Kiyama S, Inamoto T, Takahara K, Kotake Y, Segawa N, Morishita R, Takahara S, Hayasaki H, Otsuki Y, Horie S, Tanigawa N, Katsuoka Y (2008) Marked regression of liver metastasis by combined therapy of ultrasound-mediated NF kappaB-decoy transfer and transportal injection of paclitaxel, in mouse. Int J Cancer J Int Cancer 122:1645–1656

    Article  CAS  Google Scholar 

  • Bao S, Thrall BD, Miller DL (1997) Transfection of a reporter plasmid into cultured cells by sonoporation in vitro. Ultrasound Med Biol 23:953–959

    Article  CAS  PubMed  Google Scholar 

  • Becher H, Burns PN (2000) Handbook of contrast echocardiography: left ventricular function and myocardial perfusion. Springer, Berlin

    Google Scholar 

  • Castle J, Feinstein SB (2014) Ultrasound-directed, site-specific gene delivery. Methods Mol Biol (Clifton, NJ) 1141:67–76

    Article  CAS  Google Scholar 

  • Castle J, Butts M, Healey A, Kent K, Marino M, Feinstein SB (2013) Ultrasound-mediated targeted drug delivery: recent success and remaining challenges. Am J Physiol Heart Circ Physiol 304:H350–H357

    Article  CAS  PubMed  Google Scholar 

  • Castle JW, Kent KP, Fan Y, Wallace KD, Davis CE, Roberts JC, Marino ME, Thomenius KE, Lim HW, Coles E, Davidson MH, Feinstein SB, DeMaria A (2015) Therapeutic ultrasound: increased HDL-cholesterol following infusions of acoustic microspheres and apolipoprotein A-I plasmids. Atherosclerosis 241:92–99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y-C, Jiang L-P, Liu N-X, Ding L, Liu X-L, Wang Z-H, Hong K, Zhang Q-P (2011) Enhanced gene transduction into skeletal muscle of mice in vivo with pluronic block copolymers and ultrasound exposure. Cell Biochem Biophys 60:267–273

    Article  CAS  PubMed  Google Scholar 

  • Choi JJ, Pernot M, Brown TR, Small SA, Konofagou EE (2007a) Spatio-temporal analysis of molecular delivery through the blood-brain barrier using focused ultrasound. Phys Med Biol 52:5509–5530

    Article  CAS  PubMed  Google Scholar 

  • Choi JJ, Pernot M, Small SA, Konofagou EE (2007b) Noninvasive, transcranial and localized opening of the blood-brain barrier using focused ultrasound in mice. Ultrasound Med Biol 33:95–104

    Article  PubMed  Google Scholar 

  • Cochran M, Wheatley MA (2013) In vitro gene delivery with ultrasound-triggered polymer microbubbles. Ultrasound Med Biol 39:1102–1119

    Article  PubMed  PubMed Central  Google Scholar 

  • Cohen JL, Cheirif J, Segar DS, Gillam LD, Gottdiener JS, Hausnerova E, Bruns DE (1998) Improved left ventricular endocardial border delineation and opacification with OPTISON (FS069), a new echocardiographic contrast agent. Results of a phase III Multicenter Trial. J Am Coll Cardiol 32:746–752

    Article  CAS  PubMed  Google Scholar 

  • Delalande A, Kotopoulis S, Postema M, Midoux P, Pichon C (2013) Sonoporation: mechanistic insights and ongoing challenges for gene transfer. Gene 6:00364–00368

    Google Scholar 

  • Dimcevski G (n.d.) Ultrasound-assisted treatment of inoperable pancreatic cancer. ClinicalTrials.gov. https://clinicaltrials.gov/show/NCT01674556

  • Doinikov AA, Bouakaz A (2010) Acoustic microstreaming around an encapsulated particle. J Acoust Soc Am 127:1218–1227

    Article  PubMed  Google Scholar 

  • Duvshani-Eshet M, Machluf M (2007) Efficient transfection of tumors facilitated by long-term therapeutic ultrasound in combination with contrast agent: from in vitro to in vivo setting. Cancer Gene Ther 14:306–315

    Article  CAS  PubMed  Google Scholar 

  • Duvshani-Eshet M, Baruch L, Kesselman E, Shimoni E, Machluf M (2006) Therapeutic ultrasound-mediated DNA to cell and nucleus: bioeffects revealed by confocal and atomic force microscopy. Gene Ther 13:163–172

    Article  CAS  PubMed  Google Scholar 

  • Duvshani-Eshet M, Benny O, Morgenstern A, Machluf M (2007) Therapeutic ultrasound facilitates antiangiogenic gene delivery and inhibits prostate tumor growth. Mol Cancer Ther 6:2371–2382

    Article  CAS  PubMed  Google Scholar 

  • Endoh M, Koibuchi N, Sato M, Morishita R, Kanzaki T, Murata Y, Kaneda Y (2002) Fetal gene transfer by intrauterine injection with microbubble-enhanced ultrasound. Mol Ther: J Am Soc Gene Ther 5:501–508

    Article  CAS  Google Scholar 

  • Escoffre JM, Zeghimi A, Novell A, Bouakaz A (2013) In-vivo gene delivery by sonoporation: recent progress and prospects. Curr Gene Ther 13:2–14

    Article  CAS  PubMed  Google Scholar 

  • Forbes MM, Steinberg RL, O’Brien WD Jr (2008) Examination of inertial cavitation of Optison in producing sonoporation of chinese hamster ovary cells. Ultrasound Med Biol 34:2009–2018

    Article  PubMed  PubMed Central  Google Scholar 

  • Frenkel PA, Chen S, Thai T, Shohet RV, Grayburn PA (2002) DNA-loaded albumin microbubbles enhance ultrasound-mediated transfection in vitro. Ultrasound Med Biol 28:817–822

    Article  PubMed  Google Scholar 

  • Gilje OH (ed) (2015) Recent Norwegian experiences with Sonazoid. The 30th anniversary bubble conference, Chicago, 10–12 Sept 2015

    Google Scholar 

  • Goldberg BB, Liu J-B, Forsberg F (1994) Ultrasound contrast agents: a review. Ultrasound Med Biol 20:319–333

    Article  CAS  PubMed  Google Scholar 

  • Greenleaf WJ, Bolander ME, Sarkar G, Goldring MB, Greenleaf JF (1998) Artificial cavitation nuclei significantly enhance acoustically induced cell transfection. Ultrasound Med Biol 24:587–595

    Article  CAS  PubMed  Google Scholar 

  • Guzman HR, Nguyen DX, Khan S, Prausnitz MR (2001) Ultrasound-mediated disruption of cell membranes. II. Heterogeneous effects on cells. J Acoust Soc Am 110:597–606

    Article  CAS  PubMed  Google Scholar 

  • Guzman HR, McNamara AJ, Nguyen DX, Prausnitz MR (2003) Bioeffects caused by changes in acoustic cavitation bubble density and cell concentration: a unified explanation based on cell-to-bubble ratio and blast radius. Ultrasound Med Biol 29:1211–1222

    Article  PubMed  Google Scholar 

  • Hallow DM, Mahajan AD, McCutchen TE, Prausnitz MR (2006) Measurement and correlation of acoustic cavitation with cellular bioeffects. Ultrasound Med Biol 32:1111–1122

    Article  PubMed  Google Scholar 

  • Hart DL, Heidkamp MC, Iyengar R, Vijayan K, Szotek EL, Barakat JA, Leya M, Henze M, Scrogin K, Henderson KK, Samarel AM (2008) CRNK gene transfer improves function and reverses the myosin heavy chain isoenzyme switch during post-myocardial infarction left ventricular remodeling. J Mol Cell Cardiol 45:93–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hashiya N, Aoki M, Tachibana K, Taniyama Y, Yamasaki K, Hiraoka K, Makino H, Yasufumi K, Ogihara T, Morishita R (2004) Local delivery of E2F decoy oligodeoxynucleotides using ultrasound with microbubble agent (Optison) inhibits intimal hyperplasia after balloon injury in rat carotid artery model. Biochem Biophys Res Commun 317:508–514

    Article  CAS  PubMed  Google Scholar 

  • Hernot S, Klibanov AL (2008) Microbubbles in ultrasound-triggered drug and gene delivery. Adv Drug Deliv Rev 60:1153–1166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Howard CM, Forsberg F, Minimo C, Liu JB, Merton DA, Claudio PP (2006) Ultrasound guided site specific gene delivery system using adenoviral vectors and commercial ultrasound contrast agents. J Cell Physiol 209:413–421

    Article  CAS  PubMed  Google Scholar 

  • Hu X, Kheirolomoom A, Mahakian LM, Beegle JR, Kruse DE, Lam KS, Ferrara KW (2012) Insonation of targeted microbubbles produces regions of reduced blood flow within tumor vasculature. Invest Radiol 47:398

    Article  PubMed  PubMed Central  Google Scholar 

  • Iwanaga K, Tominaga K, Yamamoto K, Habu M, Maeda H, Akifusa S, Tsujisawa T, Okinaga T, Fukuda J, Nishihara T (2007) Local delivery system of cytotoxic agents to tumors by focused sonoporation. Cancer Gene Ther 14:354–363

    Article  CAS  PubMed  Google Scholar 

  • Turánek J, Miller AD, Kauerová Z, Lukáč R, Mašek J, Koudelka S, Raška M (2015) Advances in bioengineering, Prof. Pier Andrea Serra (ed), ISBN: 978-953-51-2141-1, InTech, doi:10.5772/59870. Available from: http://www.intechopen.com/books/advances-in-bioengineering/lipid-based-nanoparticles-and-microbubbles-multifunctional-lipid-based-biocompatible-particles-for-i. Lipid-based nanoparticles and microbubbles – multifunctional lipid-based biocompatible particles for in vivo imaging and theranostics, advances in bioengineering

    Google Scholar 

  • Jelenc J, Jelenc J, Miklavčič D, Lebar AM (2012) Low-frequency sonoporation in vitro: experimental system evaluation. Strojniški Vestn-J Mech Eng 58:319–326

    Article  Google Scholar 

  • Ka SM, Huang XR, Lan HY, Tsai PY, Yang SM, Shui HA, Chen A (2007) Smad7 gene therapy ameliorates an autoimmune crescentic glomerulonephritis in mice. J Am Soc Nephrol: JASN 18:1777–1788

    Article  CAS  PubMed  Google Scholar 

  • Kalli C, Teoh WC, Leen E (2014) Introduction of genes via sonoporation and electroporation. Adv Exp Med Biol 818:231–254

    Article  PubMed  Google Scholar 

  • Kamp O (ed) (2015) Reduction of microvasculature injury using a theranostic imaging strategy, an unexpected finding. In: The 30th anniversary bubble conference, Chicago, 10–12 Sept 2015

    Google Scholar 

  • Kamp O, Dilkmas PA (n.d.) Ultrasound contrast agents to facilitate sonothrombolysis in patients with acute myocardial infarction. http://www.trialregister.nl/trialreg/admin/rctview.asp?TC=161

  • Karshafian R, Bevan PD, Burns PN, Karshafian R, Samac S, Banerjee M, Bevan PD (eds) (2005) Ultrasound-induced uptake of different size markers in mammalian cells. Ultrasonics symposium, 2005 IEEE; 18–21 Sept 2005

    Google Scholar 

  • Kim HJ, Greenleaf JF, Kinnick RR, Bronk JT, Bolander ME (1996) Ultrasound-mediated transfection of mammalian cells. Hum Gene Ther 7:1339–1346

    Article  CAS  PubMed  Google Scholar 

  • Kinoshita M, Hynynen K (2005) Intracellular delivery of Bak BH3 peptide by microbubble-enhanced ultrasound. Pharm Res 22:716–720

    Article  CAS  PubMed  Google Scholar 

  • Kinoshita M, Hynynen K (2006) Intracellular delivery of peptides and siRNAs using microbubble enhanced focused ultrasound. AIP Conf Proc 829:538–542

    Article  CAS  Google Scholar 

  • Koike H, Tomita N, Azuma H, Taniyama Y, Yamasaki K, Kunugiza Y, Tachibana K, Ogihara T, Morishita R (2005) An efficient gene transfer method mediated by ultrasound and microbubbles into the kidney. J Gene Med 7:108–116

    Article  CAS  PubMed  Google Scholar 

  • Kondo I, Ohmori K, Oshita A, Takeuchi H, Fuke S, Shinomiya K, Noma T, Namba T, Kohno M (2004) Treatment of acute myocardial infarction by hepatocyte growth factor gene transfer: the first demonstration of myocardial transfer of a “functional” gene using ultrasonic microbubble destruction. J Am Coll Cardiol 44:644–653

    Article  CAS  PubMed  Google Scholar 

  • Kotopoulis S, Dimcevski G, Gilja OH, Hoem D, Postema M (2013) Treatment of human pancreatic cancer using combined ultrasound, microbubbles, and gemcitabine: a clinical case study. Med Phys 40:072902

    Article  PubMed  Google Scholar 

  • Kuliszewski MA, Kobulnik J, Lindner JR, Stewart DJ, Leong-Poi H (2011) Vascular gene transfer of SDF-1 promotes endothelial progenitor cell engraftment and enhances angiogenesis in ischemic muscle. Mol Ther 19:895–902. doi:10.1038/mt.2011.1018. Epub 2011 Mar 1031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lan HY, Mu W, Tomita N, Huang XR, Li JH, Zhu HJ, Morishita R, Johnson RJ (2003) Inhibition of renal fibrosis by gene transfer of inducible Smad7 using ultrasound-microbubble system in rat UUO model. J Am Soc Nephrol: JASN 14:1535–1548

    Article  CAS  PubMed  Google Scholar 

  • Larina IV, Evers BM, Esenaliev RO (2005) Optimal drug and gene delivery in cancer cells by ultrasound-induced cavitation. Anticancer Res 25:149–156

    CAS  PubMed  Google Scholar 

  • Lawrie A, Brisken AF, Francis SE, Cumberland DC, Crossman DC, Newman CM (2000) Microbubble-enhanced ultrasound for vascular gene delivery. Gene Ther 7:2023–2027

    Article  CAS  PubMed  Google Scholar 

  • Lawrie A, Brisken AF, Francis SE, Wyllie D, Kiss-Toth E, Qwarnstrom EE, Dower SK, Crossman DC, Newman CM (2003) Ultrasound-enhanced transgene expression in vascular cells is not dependent upon cavitation-induced free radicals. Ultrasound Med Biol 29:1453–1461

    Article  PubMed  Google Scholar 

  • Liang HD, Tang J, Halliwell M (2010) Sonoporation, drug delivery, and gene therapy. Proc Inst Mech Eng Part H J Eng Med 224:343–361

    Article  Google Scholar 

  • Lipsman N, Mainprize TG, Schwartz ML, Hynynen K, Lozano AM (2014) Intracranial applications of magnetic resonance-guided focused ultrasound. Neurother: J Am Soc Exp Neurother 11:593–605

    Article  Google Scholar 

  • Lu QL, Liang HD, Partridge T, Blomley MJ (2003) Microbubble ultrasound improves the efficiency of gene transduction in skeletal muscle in vivo with reduced tissue damage. Gene Ther 10:396–405

    Article  CAS  PubMed  Google Scholar 

  • Lum AFH, Borden MA, Dayton PA, Kruse DE, Simon SI, Ferrara KW (2006) Ultrasound radiation force enables targeted deposition of model drug carriers loaded on microbubbles. J Control Release 111:128–134

    Article  CAS  PubMed  Google Scholar 

  • Mathias W, Kamp O, Porter T (eds) Safety and feasibility of diagnostic ultrasound high mechanical Index impulses in restoring epicardial flow in acute ST segment elevation myocardial infarction in humans. In: The 30th anniversary bubble conference, Chicago, 10–12 Sept 2015

    Google Scholar 

  • McDannold N, Vykhodtseva N, Hynynen K (2008) Effects of acoustic parameters and ultrasound contrast agent dose on focused-ultrasound induced blood-brain barrier disruption. Ultrasound Med Biol 34:930–937

    Article  PubMed  PubMed Central  Google Scholar 

  • Mehier-Humbert S, Guy RH (2005) Physical methods for gene transfer: improving the kinetics of gene delivery into cells. Adv Drug Deliv Rev 57:733–753

    Article  CAS  PubMed  Google Scholar 

  • Mehier-Humbert S, Yan F, Frinking P, Schneider M, Guy RH, Bettinger T (2007) Ultrasound-mediated gene delivery: influence of contrast agent on transfection. Bioconjug Chem 18:652–662

    Article  CAS  PubMed  Google Scholar 

  • Miao CH, Brayman AA, Loeb KR, Ye P, Zhou L, Mourad P, Crum LA (2005) Ultrasound enhances gene delivery of human factor IX plasmid. Hum Gene Ther 16:893–905

    Article  CAS  PubMed  Google Scholar 

  • Miller DL, Dou C, Song J (2003) DNA transfer and cell killing in epidermoid cells by diagnostic ultrasound activation of contrast agent gas bodies in vitro. Ultrasound Med Biol 29:601–607

    Article  PubMed  Google Scholar 

  • Miller DL, Averkiou MA, Brayman AA, Everbach EC, Holland CK, Wible JH Jr, Wu J (2008) Bioeffects considerations for diagnostic ultrasound contrast agents. J Ultrasound Med: Off J Am Inst Ultrasound Med 27:611–632; quiz 633–616

    Google Scholar 

  • Nakaya H, Shimizu T, Isobe K, Tensho K, Okabe T, Nakamura Y, Nawata M, Yoshikawa H, Takaoka K, Wakitani S (2005) Microbubble-enhanced ultrasound exposure promotes uptake of methotrexate into synovial cells and enhanced antiinflammatory effects in the knees of rabbits with antigen-induced arthritis. Arthritis Rheum 52:2559–2566

    Article  CAS  PubMed  Google Scholar 

  • Ng YY, Hou CC, Wang W, Huang XR, Lan HY (2005) Blockade of NFkappaB activation and renal inflammation by ultrasound-mediated gene transfer of Smad7 in rat remnant kidney. Kidney Int Suppl 67(94):S83–S91

    Google Scholar 

  • Nozaki T, Ogawa R, Watanabe A, Nishio R, Fuse H, Kondo T (2006) Ultrasound-mediated gene transfection: problems to be solved and future possibilities. J Med Ultrason 33:135–142

    Article  Google Scholar 

  • Ozaki K, Makino H, Aoki M, Miyake T, Yasumasa N, Osako MK, Nakagami H, Rakugi H, Morishita R (2012) Therapeutic effect of ribbon-type nuclear factor-kappaB decoy oligonucleotides in a rat model of inflammatory bowel disease. Curr Gene Ther 12:484–492

    Article  CAS  PubMed  Google Scholar 

  • Piscaglia F, Nolsoe C, Fau–Dietrich CF, Dietrich Cf Fau–Cosgrove DO, Cosgrove Do Fau–Gilja OH, Gilja Oh Fau–Bachmann Nielsen M, Bachmann Nielsen M Fau–Albrecht T, Albrecht T Fau–Barozzi L, Barozzi L Fau–Bertolotto M, Bertolotto M Fau–Catalano O, Catalano O Fau–Claudon M, Claudon M Fau–Clevert DA, Clevert Da Fau–Correas JM, Correas Jm Fau–D’Onofrio M, D’Onofrio M Fau–Drudi FM, Drudi Fm Fau–Eyding J, Eyding J Fau–Giovannini M, Giovannini M Fau–Hocke M, Hocke M Fau–Ignee A, Ignee A Fau–Jung EM, Jung Em Fau–Klauser AS, Klauser As Fau–Lassau N, Lassau N Fau–Leen E, Leen E Fau–Mathis G, Mathis G Fau–Saftoiu A, Saftoiu A Fau–Seidel G, Seidel G Fau–Sidhu PS, Sidhu Ps Fau–ter Haar G, ter Haar G Fau–Timmerman D, Timmerman D Fau–Weskott HP, Weskott HP (2011) The EFSUMB guidelines and recommendations on the clinical practice of contrast enhanced ultrasound (CEUS): update 2011 on non-hepatic applications

    Google Scholar 

  • Pislaru SV, Pislaru C, Kinnick RR, Singh R, Gulati R, Greenleaf JF, Simari RD (2003) Optimization of ultrasound-mediated gene transfer: comparison of contrast agents and ultrasound modalities. Eur Heart J 24:1690–1698

    Article  CAS  PubMed  Google Scholar 

  • Porter T (n.d.) Microvascular reperfusion utilizing sonothrombolysis in acute myocardial infarction (MRUSMI TRIAL). ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT02170103

  • Qin S, Caskey CF, Ferrara KW (2009) Ultrasound contrast microbubbles in imaging and therapy: physical principles and engineering. Phys Med Biol 54:R27–R57. doi:10.1088/0031-9155/1054/1086/R1001, Epub 2009 Feb 1019

    Article  PubMed  PubMed Central  Google Scholar 

  • Qiu Y, Luo Y, Zhang Y, Cui W, Zhang D, Wu J, Zhang J, Tu J (2010) The correlation between acoustic cavitation and sonoporation involved in ultrasound-mediated DNA transfection with polyethylenimine (PEI) in vitro. J Control Release 145:40–48

    Article  CAS  PubMed  Google Scholar 

  • Qiu Y, Zhang C, Tu J, Zhang D (2012) Microbubble-induced sonoporation involved in ultrasound-mediated DNA transfection in vitro at low acoustic pressures. J Biomech 45:1339–1345

    Article  PubMed  Google Scholar 

  • Roos ST, Juffermans LJM, Slikkerveer J, Unger EC, Porter TR, Kamp O (2014) Sonothrombolysis in acute stroke and myocardial infarction: a systematic review. IJC Heart Vessel 4:1–6

    Article  Google Scholar 

  • Sakai T, Kawaguchi M, Kosuge Y (2009) siRNA – mediated gene silencing in the salivary gland using in vivo microbubble‐enhanced sonoporation. Oral Dis 15:505–511

    Article  CAS  PubMed  Google Scholar 

  • Sheikh S, Pallagatti S, Singh B, Puri N, Singh R, Kalucha A (2011) Sonoporation, a redefined ultrasound modality as therapeutic aid: a review. J Clin Exp Dent 3:e228–e234

    Article  Google Scholar 

  • Sheikov N, McDannold N, Sharma S, Hynynen K (2008) Effect of focused ultrasound applied with an ultrasound contrast agent on the tight junctional integrity of the brain microvascular endothelium. Ultrasound Med Biol 34:1093–1104

    Article  PubMed  PubMed Central  Google Scholar 

  • Shen ZP, Brayman AA, Chen L, Miao CH (2008) Ultrasound with microbubbles enhances gene expression of plasmid DNA in the liver via intraportal delivery. Gene Ther 15:1147–1155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimamura M, Sato N, Taniyama Y, Yamamoto S, Endoh M, Kurinami H, Aoki M, Ogihara T, Kaneda Y, Morishita R (2004) Development of efficient plasmid DNA transfer into adult rat central nervous system using microbubble-enhanced ultrasound. Gene Ther 11:1532–1539

    Article  CAS  PubMed  Google Scholar 

  • Shimamura M, Sato N, Taniyama Y, Kurinami H, Tanaka H, Takami T, Ogihara T, Tohyama M, Kaneda Y, Morishita R (2005) Gene transfer into adult rat spinal cord using naked plasmid DNA and ultrasound microbubbles. J Gene Med 7:1468–1474

    Article  CAS  PubMed  Google Scholar 

  • Sirsi S, Borden M (2009) Microbubble compositions, properties and biomedical applications. Bubble Sci Eng Technol 1:3–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song J, Chappell JC, Qi M, VanGieson EJ, Kaul S, Price RJ (2002) Influence of injection site, microvascular pressure and ultrasound variables on microbubble-mediated delivery of microspheres to muscle. J Am Coll Cardiol 39:726–731

    Article  PubMed  Google Scholar 

  • Stewart MJ (2003) Contrast echocardiography. Heart 89:342–348

    Article  PubMed  PubMed Central  Google Scholar 

  • Stride E, Saffari N (2003) Microbubble ultrasound contrast agents: a review. Proc Inst Mech Eng Part H J Eng Med 217:429–447

    Article  CAS  Google Scholar 

  • Takahashi M, Kido K, Aoi A, Furukawa H, Ono M, Kodama T (2007) Spinal gene transfer using ultrasound and microbubbles. J Control Release: Off J Control Release Soc 117:267–272

    Article  CAS  Google Scholar 

  • Takeuchi H, Ohmori K, Kondo I, Oshita A, Shinomiya K, Yu Y, Takagi Y, Mizushige K, Kangawa K, Kohno M (2003) Potentiation of C-type natriuretic peptide with ultrasound and microbubbles to prevent neointimal formation after vascular injury in rats. Cardiovasc Res 58:231–238

    Article  CAS  PubMed  Google Scholar 

  • Taniyama Y, Tachibana K, Hiraoka K, Aoki M, Yamamoto S, Matsumoto K, Nakamura T, Ogihara T, Kaneda Y, Morishita R (2002a) Development of safe and efficient novel nonviral gene transfer using ultrasound: enhancement of transfection efficiency of naked plasmid DNA in skeletal muscle. Gene Ther 9:372–380

    Article  CAS  PubMed  Google Scholar 

  • Taniyama Y, Tachibana K, Hiraoka K, Namba T, Yamasaki K, Hashiya N, Aoki M, Ogihara T, Yasufumi K, Morishita R (2002b) Local delivery of plasmid DNA into rat carotid artery using ultrasound. Circulation 105:1233–1239

    Article  CAS  PubMed  Google Scholar 

  • Tavares BG, Aguiar MO, Tsutsui JM, Garcia D, De Oliveira AG, Ramires JAF, Filho RK, Porter T, Wilson M (eds) (2015) Safety and feasibility of diagnostic ultrasound high mechanical index impulses in restoring epicardial flow in acute st segment elevation myocardial infarction in humans. The American Society of Echocardiography, Seattle, 10–14 Jun 2015; 10–12 Sept 2015

    Google Scholar 

  • Treat LH, McDannold N, Vykhodtseva N, Zhang Y, Tam K, Hynynen K (2007) Targeted delivery of doxorubicin to the rat brain at therapeutic levels using MRI-guided focused ultrasound. Int J Cancer J Int Cancer 121:901–907

    Article  CAS  Google Scholar 

  • Unger E, Porter T, Lindner J, Grayburn P (2014) Cardiovascular drug delivery with ultrasound and microbubbles. Adv Drug Deliv Rev 72:110–126

    Article  CAS  PubMed  Google Scholar 

  • Urban MW, Fatemi M, Greenleaf JF (2010) Modulation of ultrasound to produce multifrequency radiation force. J Acoust Soc Am 127:1228–1238

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang XH (2011) Role of constituents of Optison in Optison-mediated gene transfection enhancement in skeletal muscle in vivo. J Ultrasound Med: Off J Am Inst Ultrasound Med 30:325–332

    CAS  Google Scholar 

  • Ward M, Wu J, Chiu JF (2000) Experimental study of the effects of Optison concentration on sonoporation in vitro. Ultrasound Med Biol 26:1169–1175

    Article  CAS  PubMed  Google Scholar 

  • Wei K, Jayaweera AR, Firoozan S, Linka A, Skyba DM, Kaul S (1998) Basis for detection of stenosis using venous administration of microbubbles during myocardial contrast echocardiography: bolus or continuous infusion? J Am Coll Cardiol 32:252–260

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Ross JP, Chiu JF (2002) Reparable sonoporation generated by microstreaming. J Acoust Soc Am 111:1460–1464

    Article  PubMed  Google Scholar 

  • Wu J, Xie F, Kumar T, Liu J, Lof J, Shi W, Everbach EC, Porter TR (2014) Improved sonothrombolysis from a modified diagnostic transducer delivering impulses containing a longer pulse duration. Ultrasound Med Biol 40:1545–1553

    Article  PubMed  PubMed Central  Google Scholar 

  • Xenariou S, Griesenbach U, Liang HD, Zhu J, Farley R, Somerton L, Singh C, Jeffery PK, Ferrari S, Scheule RK, Cheng SH, Geddes DM, Blomley M, Alton EW (2007) Use of ultrasound to enhance nonviral lung gene transfer in vivo. Gene Ther 14:768–774

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex Jackson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Jackson, A., Castle, J.W., Smith, A., Kalli, C.K. (2016). Optison Albumin Microspheres in Ultrasound-Assisted Gene Therapy and Drug Delivery. In: Otagiri, M., Chuang, V. (eds) Albumin in Medicine. Springer, Singapore. https://doi.org/10.1007/978-981-10-2116-9_7

Download citation

Publish with us

Policies and ethics