Clinical Drug-Drug Interaction Data: Effects of Antiretroviral Agents on Co-administered Drugs



This chapter summarizes the clinical drug-drug interaction data for each antiretroviral agent. The effects of antiretroviral agents on the pharmacokinetics of co-administered drugs will be discussed:
  • Nonnucleoside reverse transcriptase inhibitors (NNRTIs): delavirdine, efavirenz, etravirine, nevirapine, and rilpivirine

  • Nucleoside reverse-transcriptase inhibitors (NRTIs): abacavir, didanosine, emtricitabine, lamivudine, stavudine, tenofovir, and zidovudine

  • Protease inhibitors (PIs): atazanavir, darunavir, fosamprenavir, indinavir, nelfinavir, ritonavir, saquinavir, tipranavir, and lopinavir

  • Fusion inhibitors: enfuvirtide

  • Entry inhibitors: maraviroc

  • Integrase inhibitors: dolutegravir, elvitegravir, raltegravir


Pharmacokinetic Interaction CYP450 Enzyme Ethinyl Estradiol Nucleoside Reverse Transcriptase Inhibitor Intrinsic Clearance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Guidelines for the use of antiretroviral agents in HIV-1-infected adults and adolescents. 2016. Available at: Accessed 19 June 2016
  2. 2.
    McCance-Katz EF, Moody DE, Morse GD, Friedland G, Pade P, Baker J et al (2006) Interactions between buprenorphine and antiretrovirals. I. The nonnucleoside reverse-transcriptase inhibitors efavirenz and delavirdine. Clin Infect Dis 43(Suppl 4):S224–S234PubMedCrossRefGoogle Scholar
  3. 3.
    Voorman RL, Maio SM, Hauer MJ, Sanders PE, Payne NA, Ackland MJ (1998) Metabolism of delavirdine, a human immunodeficiency virus type-1 reverse transcriptase inhibitor, by microsomal cytochrome P450 in humans, rats, and other species: probable involvement of CYP2D6 and CYP3A. Drug Metab Dispos 26(7):631–639PubMedGoogle Scholar
  4. 4.
    Kobayashi K, Yamamoto T, Chiba K, Tani M, Shimada N, Ishizaki T et al (1998) Human buprenorphine N-dealkylation is catalyzed by cytochrome P450 3A4. Drug Metab Dispos 26(8):818–821PubMedGoogle Scholar
  5. 5.
    Rescriptor (2012) Prescribing information. Available at: Accessed 19 June 2016
  6. 6.
    Rodrigues AD, Roberts EM, Mulford DJ, Yao Y, Ouellet D (1997) Oxidative metabolism of clarithromycin in the presence of human liver microsomes. Major role for the cytochrome P4503A (CYP3A) subfamily. Drug Metab Dispos 25(5):623–630PubMedGoogle Scholar
  7. 7.
    Borin MT, Cox SR, Herman BD, Carel BJ, Anderson RD, Freimuth WW (1997) Effect of fluconazole on the steady-state pharmacokinetics of delavirdine in human immunodeficiency virus-positive patients. Antimicrob Agents Chemother 41(9):1892–1897PubMedPubMedCentralGoogle Scholar
  8. 8.
    Voorman RL, Payne NA, Wienkers LC, Hauer MJ, Sanders PE (2001) Interaction of delavirdine with human liver microsomal cytochrome P450: inhibition of CYP2C9, CYP2C19, and CYP2D6. Drug Metab Dispos 29(1):41–47PubMedGoogle Scholar
  9. 9.
    Borin MT, Chambers JH, Carel BJ, Freimuth WW, Aksentijevich S, Piergies AA (1997) Pharmacokinetic study of the interaction between rifabutin and delavirdine mesylate in HIV-1 infected patients. Antiviral Res 35(1):53–63PubMedCrossRefGoogle Scholar
  10. 10.
    Borin MT, Chambers JH, Carel BJ, Gagnon S, Freimuth WW (1997) Pharmacokinetic study of the interaction between rifampin and delavirdine mesylate. Clin Pharmacol Ther 61(5):544–553PubMedCrossRefGoogle Scholar
  11. 11.
    Ferry JJ, Herman BD, Carel BJ, Carlson GF, Batts DH (1998) Pharmacokinetic drug-drug interaction study of delavirdine and indinavir in healthy volunteers. J Acquir Immune Defic Syndr Hum Retrovirol 18(3):252–259PubMedCrossRefGoogle Scholar
  12. 12.
    Chiba M, Hensleigh M, Nishime JA, Balani SK, Lin JH (1996) Role of cytochrome P450 3A4 in human metabolism of MK-639, a potent human immunodeficiency virus protease inhibitor. Drug Metab Dispos 24(3):307–314PubMedGoogle Scholar
  13. 13.
    Hirani VN, Raucy JL, Lasker JM (2004) Conversion of the HIV protease inhibitor nelfinavir to a bioactive metabolite by human liver CYP2C19. Drug Metab Dispos 32(12):1462–1467PubMedCrossRefGoogle Scholar
  14. 14.
    Eagling VA, Wiltshire H, Whitcombe IW, Back DJ (2002) CYP3A4-mediated hepatic metabolism of the HIV-1 protease inhibitor saquinavir in vitro. Xenobiotica 32(1):1–17PubMedCrossRefGoogle Scholar
  15. 15.
    Morse GD, Fischl MA, Shelton MJ, Cox SR, Driver M, DeRemer M et al (1997) Single-dose pharmacokinetics of delavirdine mesylate and didanosine in patients with human immunodeficiency virus infection. Antimicrob Agents Chemother 41(1):169–174PubMedPubMedCentralGoogle Scholar
  16. 16.
    Barbier O, Turgeon D, Girard C, Green MD, Tephly TR, Hum DW et al (2000) 3′-azido-3′-deoxythimidine (AZT) is glucuronidated by human UDP-glucuronosyltransferase 2B7 (UGT2B7). Drug Metab Dispos 28(5):497–502PubMedGoogle Scholar
  17. 17.
    Mugundu GM, Hariparsad N, Desai PB (2010) Impact of ritonavir, atazanavir and their combination on the CYP3A4 induction potential of efavirenz in primary human hepatocytes. Drug Metab Lett 4(1):45–50PubMedCrossRefGoogle Scholar
  18. 18.
    Sustiva (2008) Prescribing information. Available at:,021360s019lbl.pdf. Accessed 19 June 2016
  19. 19.
    Iribarne C, Berthou F, Carlhant D, Dreano Y, Picart D, Lohezic F et al (1998) Inhibition of methadone and buprenorphine N-dealkylations by three HIV-1 protease inhibitors. Drug Metab Dispos 26(3):257–260PubMedGoogle Scholar
  20. 20.
    Trapnell CB, Klecker RW, Jamis-Dow C, Collins JM (1998) Glucuronidation of 3′-azido-3′-deoxythymidine (zidovudine) by human liver microsomes: relevance to clinical pharmacokinetic interactions with atovaquone, fluconazole, methadone, and valproic acid. Antimicrob Agents Chemother 42(7):1592–1596PubMedPubMedCentralGoogle Scholar
  21. 21.
    Gerber JG, Rosenkranz SL, Fichtenbaum CJ, Vega JM, Yang A, Alston BL et al (2005) Effect of efavirenz on the pharmacokinetics of simvastatin, atorvastatin, and pravastatin: results of AIDS Clinical Trials Group 5108 Study. J Acquir Immune Defic Syndr 39(3):307–312PubMedCrossRefGoogle Scholar
  22. 22.
    Robertson SM, Maldarelli F, Natarajan V, Formentini E, Alfaro RM, Penzak SR (2008) Efavirenz induces CYP2B6-mediated hydroxylation of bupropion in healthy subjects. J Acquir Immune Defic Syndr 49(5):513–519PubMedCrossRefGoogle Scholar
  23. 23.
    Coles R, Kharasch ED (2008) Stereoselective metabolism of bupropion by cytochrome P4502B6 (CYP2B6) and human liver microsomes. Pharm Res 25(6):1405–1411PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Ji P, Damle B, Xie J, Unger SE, Grasela DM, Kaul S (2008) Pharmacokinetic interaction between efavirenz and carbamazepine after multiple-dose administration in healthy subjects. J Clin Pharmacol 48(8):948–956PubMedCrossRefGoogle Scholar
  25. 25.
    Kerr BM, Thummel KE, Wurden CJ, Klein SM, Kroetz DL, Gonzalez FJ et al (1994) Human liver carbamazepine metabolism. Role of CYP3A4 and CYP2C8 in 10,11-epoxide formation. Biochem Pharmacol 47(11):1969–1979PubMedCrossRefGoogle Scholar
  26. 26.
    Carten ML, Kiser JJ, Kwara A, Mawhinney S, Cu-Uvin S (2012) Pharmacokinetic interactions between the hormonal emergency contraception, levonorgestrel (Plan B), and Efavirenz. Infect Dis Obstet Gynecol 2012:137192PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Obach RS, Cox LM, Tremaine LM (2005) Sertraline is metabolized by multiple cytochrome P450 enzymes, monoamine oxidases, and glucuronyl transferases in human: an in vitro study. Drug Metab Dispos 33(2):262–270PubMedCrossRefGoogle Scholar
  28. 28.
    Huang L, Parikh S, Rosenthal PJ, Lizak P, Marzan F, Dorsey G et al (2012) Concomitant efavirenz reduces pharmacokinetic exposure to the antimalarial drug artemether-lumefantrine in healthy volunteers. J Acquir Immune Defic Syndr 61(3):310–316PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Byakika-Kibwika P, Lamorde M, Mayito J, Nabukeera L, Namakula R, Mayanja-Kizza H et al (2012) Significant pharmacokinetic interactions between artemether/lumefantrine and efavirenz or nevirapine in HIV-infected Ugandan adults. J Antimicrob Chemother 67(9):2213–2221PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    van Luin M, Van der Ende ME, Richter C, Visser M, Faraj D, Van der Ven A et al (2010) Lower atovaquone/proguanil concentrations in patients taking efavirenz, lopinavir/ritonavir or atazanavir/ritonavir. AIDS 24(8):1223–1226PubMedCrossRefGoogle Scholar
  31. 31.
    la Porte CJ, Sabo JP, Beique L, Cameron DW (2009) Lack of effect of efavirenz on the pharmacokinetics of tipranavir-ritonavir in healthy volunteers. Antimicrob Agents Chemother 53(11):4840–4844PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Kakuda TN, DeMasi R, van Delft Y, Mohammed P (2013) Pharmacokinetic interaction between etravirine or darunavir/ritonavir and artemether/lumefantrine in healthy volunteers: a two-panel, two-way, two-period, randomized trial. HIV Med 14(7):421–429PubMedCrossRefGoogle Scholar
  33. 33.
    Intelence (2009) Prescribing information. Available at: Accessed 19 June 2016
  34. 34.
    Yanakakis LJ, Bumpus NN (2012) Biotransformation of the antiretroviral drug etravirine: metabolite identification, reaction phenotyping, and characterization of autoinduction of cytochrome P450-dependent metabolism. Drug Metab Dispos 40(4):803–814PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Hammond KP, Wolfe P, Burton JR Jr, Predhomme JA, Ellis CM, Ray ML et al (2013) Pharmacokinetic interaction between boceprevir and etravirine in HIV/HCV seronegative volunteers. J Acquir Immune Defic Syndr 62(1):67–73PubMedCrossRefGoogle Scholar
  36. 36.
    Park JE, Kim KB, Bae SK, Moon BS, Liu KH, Shin JG (2008) Contribution of cytochrome P450 3A4 and 3A5 to the metabolism of atorvastatin. Xenobiotica 38(9):1240–1251PubMedCrossRefGoogle Scholar
  37. 37.
    Ku HY, Ahn HJ, Seo KA, Kim H, Oh M, Bae SK et al (2008) The contributions of cytochromes P450 3A4 and 3A5 to the metabolism of the phosphodiesterase type 5 inhibitors sildenafil, udenafil, and vardenafil. Drug Metab Dispos 36(6):986–990PubMedCrossRefGoogle Scholar
  38. 38.
    McCance-Katz EF, Moody DE, Morse GD, Ma Q, Rainey PM (2010) Lack of clinically significant drug interactions between nevirapine and buprenorphine. Am J Addict 19(1):30–37PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Viramune (2010) Prescribing information. Available at:,020636s032lbl.pdf. Accessed 19 June 2016
  40. 40.
    Edurant (2015) Prescribing information. Available at: Accessed 19 June 2016
  41. 41.
    Weiss J, Haefeli WE (2013) Potential of the novel antiretroviral drug rilpivirine to modulate the expression and function of drug transporters and drug-metabolising enzymes in vitro. Int J Antimicrob Agents 41(5):484–487PubMedCrossRefGoogle Scholar
  42. 42.
    McDowell JA, Chittick GE, Ravitch JR, Polk RE, Kerkering TM, Stein DS (1999) Pharmacokinetics of [(14)C]abacavir, a human immunodeficiency virus type 1 (HIV-1) reverse transcriptase inhibitor, administered in a single oral dose to HIV-1-infected adults: a mass balance study. Antimicrob Agents Chemother 43(12):2855–2861PubMedPubMedCentralGoogle Scholar
  43. 43.
    Videx (2009) Prescribing information. Available at: Accessed 19 June 2016
  44. 44.
    Emtriva (2012) Prescribing information. Available at: Accessed 19 June 2016
  45. 45.
    Epivir (2013) Prescribing information. Available at: Accessed 19 June 2016
  46. 46.
    Zerit (2008) Prescribing information. Available at:,020413s020lbl.pdf. Accessed 19 June 2016
  47. 47.
    Viread (2012) Prescribing information. Available at:,022577s002lbl.pdf. Accessed 19 June 2016
  48. 48.
    Baker J, Rainey PM, Moody DE, Morse GD, Ma Q, McCance-Katz EF (2010) Interactions between buprenorphine and antiretrovirals: nucleos(t)ide reverse transcriptase inhibitors (NRTI) didanosine, lamivudine, and tenofovir. Am J Addict 19(1):17–29PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Wenning LA, Friedman EJ, Kost JT, Breidinger SA, Stek JE, Lasseter KC et al (2008) Lack of a significant drug interaction between raltegravir and tenofovir. Antimicrob Agents Chemother 52(9):3253–3258PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Retrovir (2008) Prescribing information. Available at: Accessed 19 June 2016
  51. 51.
    Hulskotte EG, Feng HP, Xuan F, van Zutven MG, Treitel MA, Hughes EA et al (2013) Pharmacokinetic interactions between the hepatitis C virus protease inhibitor boceprevir and ritonavir-boosted HIV-1 protease inhibitors atazanavir, darunavir, and lopinavir. Clin Infect Dis 56(5):718–726PubMedCrossRefGoogle Scholar
  52. 52.
    Chu X, Cai X, Cui D, Tang C, Ghosal A, Chan G et al (2013) In vitro assessment of drug-drug interaction potential of boceprevir associated with drug metabolizing enzymes and transporters. Drug Metab Dispos 41(3):668–681PubMedCrossRefGoogle Scholar
  53. 53.
    Zheng J (2002) Clinical pharmacology and biopharmaceutics review (21–567). Available at: Accessed 6 June 2016
  54. 54.
    Reyataz (2015) Prescribing information. Available at: Accessed 19 June 2016
  55. 55.
    Busti AJ, Bain AM, Hall RG 2nd, Bedimo RG, Leff RD, Meek C et al (2008) Effects of atazanavir/ritonavir or fosamprenavir/ritonavir on the pharmacokinetics of rosuvastatin. J Cardiovasc Pharmacol 51(6):605–610PubMedCrossRefGoogle Scholar
  56. 56.
    van der Lee M, Sankatsing R, Schippers E, Vogel M, Fatkenheuer G, van der Ven A et al (2007) Pharmacokinetics and pharmacodynamics of combined use of lopinavir/ritonavir and rosuvastatin in HIV-infected patients. Antivir Ther 12(7):1127–1132PubMedGoogle Scholar
  57. 57.
    Baldwin SJ, Clarke SE, Chenery RJ (1999) Characterization of the cytochrome P450 enzymes involved in the in vitro metabolism of rosiglitazone. Br J Clin Pharmacol 48(3):424–432PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Burger DM, Huisman A, Van Ewijk N, Neisingh H, Van Uden P, Rongen GA et al (2008) The effect of atazanavir and atazanavir/ritonavir on UDP-glucuronosyltransferase using lamotrigine as a phenotypic probe. Clin Pharmacol Ther 84(6):698–703PubMedCrossRefGoogle Scholar
  59. 59.
    Prezista (2015) Prescribing information. Available at: Accessed 19 June 2016
  60. 60.
    Chapron B, Risler L, Phillips B, Collins C, Thummel K, Shen D (2015) Reversible, time-dependent inhibition of CYP3A-mediated metabolism of midazolam and tacrolimus by telaprevir in human liver microsomes. J Pharm Pharm Sci 18(1):101–111PubMedCrossRefGoogle Scholar
  61. 61.
    Arya V (2005) Clinical pharmacology and biopharmaceutics review (21–976). Available at: Accessed 6 June 2016
  62. 62.
    Samineni D, Desai PB, Sallans L, Fichtenbaum CJ (2012) Steady-state pharmacokinetic interactions of darunavir/ritonavir with lipid-lowering agent rosuvastatin. J Clin Pharmacol 52(6):922–931PubMedCrossRefGoogle Scholar
  63. 63.
    Neuvonen PJ (2010) Drug interactions with HMG-CoA reductase inhibitors (statins): the importance of CYP enzymes, transporters and pharmacogenetics. Curr Opin Investig Drugs 11(3):323–332PubMedGoogle Scholar
  64. 64.
    Liu L, Mugundu GM, Kirby BJ, Samineni D, Desai PB, Unadkat JD (2012) Quantification of human hepatocyte cytochrome P450 enzymes and transporters induced by HIV protease inhibitors using newly validated LC-MS/MS cocktail assays and RT-PCR. Biopharm Drug Dispos 33(4):207–217PubMedCrossRefGoogle Scholar
  65. 65.
    Kharasch ED, Hoffer C, Whittington D, Sheffels P (2004) Role of hepatic and intestinal cytochrome P450 3A and 2B6 in the metabolism, disposition, and miotic effects of methadone. Clin Pharmacol Ther 76(3):250–269PubMedCrossRefGoogle Scholar
  66. 66.
    Pearce RE, Lu W, Wang Y, Uetrecht JP, Correia MA, Leeder JS (2008) Pathways of carbamazepine bioactivation in vitro. III. The role of human cytochrome P450 enzymes in the formation of 2,3-dihydroxycarbamazepine. Drug Metab Dispos 36(8):1637–1649PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Karam WG, Goldstein JA, Lasker JM, Ghanayem BI (1996) Human CYP2C19 is a major omeprazole 5-hydroxylase, as demonstrated with recombinant cytochrome P450 enzymes. Drug Metab Dispos 24(10):1081–1087PubMedGoogle Scholar
  68. 68.
    Jornil J, Jensen KG, Larsen F, Linnet K (2010) Identification of cytochrome P450 isoforms involved in the metabolism of paroxetine and estimation of their importance for human paroxetine metabolism using a population-based simulator. Drug Metab Dispos 38(3):376–385PubMedCrossRefGoogle Scholar
  69. 69.
    Lexiva (2009) Prescribing information. Available at:,022116s005lbl.pdf. Accessed 19 June 2016
  70. 70.
    von Moltke LL, Durol AL, Duan SX, Greenblatt DJ (2000) Potent mechanism-based inhibition of human CYP3A in vitro by amprenavir and ritonavir: comparison with ketoconazole. Eur J Clin Pharmacol 56(3):259–261CrossRefGoogle Scholar
  71. 71.
    Bruggemann RJ, van Luin M, Colbers EP, van den Dungen MW, Pharo C, Schouwenberg BJ et al (2010) Effect of posaconazole on the pharmacokinetics of fosamprenavir and vice versa in healthy volunteers. J Antimicrob Chemother 65(10):2188–2194PubMedCrossRefGoogle Scholar
  72. 72.
    van der Lee MJ, Blenke AA, Rongen GA, Verwey-van Wissen CP, Koopmans PP, Pharo C et al (2007) Interaction study of the combined use of paroxetine and fosamprenavir-ritonavir in healthy subjects. Antimicrob Agents Chemother 51(11):4098–4104PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Neuvonen PJ, Niemi M, Backman JT (2006) Drug interactions with lipid-lowering drugs: mechanisms and clinical relevance. Clin Pharmacol Ther 80(6):565–581PubMedCrossRefGoogle Scholar
  74. 74.
    Gruber VA, Rainey PM, Moody DE, Morse GD, Ma Q, Prathikanti S et al (2012) Interactions between buprenorphine and the protease inhibitors darunavir-ritonavir and fosamprenavir-ritonavir. Clin Infect Dis 54(3):414–423PubMedCrossRefGoogle Scholar
  75. 75.
    Crixivan (2008) Prescribing information. Available at: Accessed 19 June 2016
  76. 76.
    Viracept (2011) Prescribing information. Available at:,020779s056,021503s017lbl.pdf. Accessed 19 June 2016
  77. 77.
    Kaletra (2013) Prescribing information. Available at: Accessed 19 June 2016
  78. 78.
    Kredo T, Mauff K, Workman L, Van der Walt JS, Wiesner L, Smith PJ et al (2016) The interaction between artemether-lumefantrine and lopinavir/ritonavir-based antiretroviral therapy in HIV-1 infected patients. BMC Infect Dis 16:30. doi: 10.1186/s12879-016-1345-1 (Published online 2016 Jan 27)PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Hogeland GW, Swindells S, McNabb JC, Kashuba AD, Yee GC, Lindley CM (2007) Lopinavir/ritonavir reduces bupropion plasma concentrations in healthy subjects. Clin Pharmacol Ther 81(1):69–75PubMedCrossRefGoogle Scholar
  80. 80.
    Bruce RD, Altice FL, Moody DE, Morse GD, Andrews L, Lin SN et al (2010) Pharmacokinetic interactions between buprenorphine/naloxone and once-daily lopinavir/ritonavir. J Acquir Immune Defic Syndr 54(5):511–514PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    van der Lee MJ, Dawood L, ter Hofstede HJ, de Graaff-Teulen MJ, van Ewijk-Beneken Kolmer EW, Caliskan-Yassen N et al (2006) Lopinavir/ritonavir reduces lamotrigine plasma concentrations in healthy subjects. Clin Pharmacol Ther 80(2):159–168PubMedCrossRefGoogle Scholar
  82. 82.
    Lim ML, Min SS, Eron JJ, Bertz RJ, Robinson M, Gaedigk A et al (2004) Coadministration of lopinavir/ritonavir and phenytoin results in two-way drug interaction through cytochrome P-450 induction. J Acquir Immune Defic Syndr 36(5):1034–1040PubMedCrossRefGoogle Scholar
  83. 83.
    Invirase (2010) Prescribing information. Available at:,021785s009lbl.pdf. Accessed 19 June 2016
  84. 84.
    Fichtenbaum CJ, Gerber JG, Rosenkranz SL, Segal Y, Aberg JA, Blaschke T et al (2002) Pharmacokinetic interactions between protease inhibitors and statins in HIV seronegative volunteers: ACTG Study A5047. AIDS 16(4):569–577PubMedCrossRefGoogle Scholar
  85. 85.
    Aptivus (2009) Prescribing information. Available at:,022292s001lbl.pdf. Accessed 19 June 2016
  86. 86.
    Fuzeon (2011) Prescribing information. Available at: Accessed 19 June 2016
  87. 87.
    Selzentry (2007) Prescribing information. Available at: Accessed 19 June 2016
  88. 88.
    Gilbertson TA, Liu L, York DA, Bray GA (1998) Dietary fat preferences are inversely correlated with peripheral gustatory fatty acid sensitivity. Ann N Y Acad Sci 855:165–168PubMedCrossRefGoogle Scholar
  89. 89.
    Vourvahis M, Plotka A, Mendes da Costa L, Fang A, Heera J (2013) Pharmacokinetic interaction between maraviroc and fosamprenavir-ritonavir: an open-label, fixed-sequence study in healthy subjects. Antimicrob Agents Chemother 57(12):6158–6164PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Tivicay (2013) Prescribing information. Available at: Accessed 19 June 2016
  91. 91.
    Zong J, Borland J, Jerva F, Wynne B, Choukour M, Song I (2014) The effect of dolutegravir on the pharmacokinetics of metformin in healthy subjects. J Int AIDS Soc 17(4 Suppl 3):19584PubMedPubMedCentralGoogle Scholar
  92. 92.
    Song IH, Zong J, Borland J, Jerva F, Wynne B, Zamek-Gliszczynski MJ et al (2016) The effect of dolutegravir on the pharmacokinetics of metformin in healthy subjects. J Acquir Immune Defic Syndr 72(4):400–407PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Vitekta (2014) Prescribing information. Available at: Accessed 19 June 2016
  94. 94.
    Isentress (2011) Prescribing information. Available at: Accessed 19 June 2016

Copyright information

© Springer Science+Business Media Singapore 2016

Authors and Affiliations

  1. 1.Faculty of Pharmaceutical SciencesThe University of British ColumbiaVancouverCanada
  2. 2.College of PharmacyQatar UniversityDohaQatar

Personalised recommendations