Skip to main content

Clinical Drug-Drug Interaction Data: Effects of Antiretroviral Agents on Co-administered Drugs

  • Chapter
  • First Online:
  • 447 Accesses

Abstract

This chapter summarizes the clinical drug-drug interaction data for each antiretroviral agent. The effects of antiretroviral agents on the pharmacokinetics of co-administered drugs will be discussed:

  • Nonnucleoside reverse transcriptase inhibitors (NNRTIs): delavirdine, efavirenz, etravirine, nevirapine, and rilpivirine

  • Nucleoside reverse-transcriptase inhibitors (NRTIs): abacavir, didanosine, emtricitabine, lamivudine, stavudine, tenofovir, and zidovudine

  • Protease inhibitors (PIs): atazanavir, darunavir, fosamprenavir, indinavir, nelfinavir, ritonavir, saquinavir, tipranavir, and lopinavir

  • Fusion inhibitors: enfuvirtide

  • Entry inhibitors: maraviroc

  • Integrase inhibitors: dolutegravir, elvitegravir, raltegravir

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Guidelines for the use of antiretroviral agents in HIV-1-infected adults and adolescents. 2016. Available at: https://aidsinfo.nih.gov/guidelines/html/1/adult-and-adolescent-treatment-guidelines/0. Accessed 19 June 2016

  2. McCance-Katz EF, Moody DE, Morse GD, Friedland G, Pade P, Baker J et al (2006) Interactions between buprenorphine and antiretrovirals. I. The nonnucleoside reverse-transcriptase inhibitors efavirenz and delavirdine. Clin Infect Dis 43(Suppl 4):S224–S234

    Article  CAS  PubMed  Google Scholar 

  3. Voorman RL, Maio SM, Hauer MJ, Sanders PE, Payne NA, Ackland MJ (1998) Metabolism of delavirdine, a human immunodeficiency virus type-1 reverse transcriptase inhibitor, by microsomal cytochrome P450 in humans, rats, and other species: probable involvement of CYP2D6 and CYP3A. Drug Metab Dispos 26(7):631–639

    CAS  PubMed  Google Scholar 

  4. Kobayashi K, Yamamoto T, Chiba K, Tani M, Shimada N, Ishizaki T et al (1998) Human buprenorphine N-dealkylation is catalyzed by cytochrome P450 3A4. Drug Metab Dispos 26(8):818–821

    CAS  PubMed  Google Scholar 

  5. Rescriptor (2012) Prescribing information. Available at: http://www.accessdata.fda.gov/drugsatfda_docs/label/2012/020705s018lbl.pdf. Accessed 19 June 2016

  6. Rodrigues AD, Roberts EM, Mulford DJ, Yao Y, Ouellet D (1997) Oxidative metabolism of clarithromycin in the presence of human liver microsomes. Major role for the cytochrome P4503A (CYP3A) subfamily. Drug Metab Dispos 25(5):623–630

    CAS  PubMed  Google Scholar 

  7. Borin MT, Cox SR, Herman BD, Carel BJ, Anderson RD, Freimuth WW (1997) Effect of fluconazole on the steady-state pharmacokinetics of delavirdine in human immunodeficiency virus-positive patients. Antimicrob Agents Chemother 41(9):1892–1897

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Voorman RL, Payne NA, Wienkers LC, Hauer MJ, Sanders PE (2001) Interaction of delavirdine with human liver microsomal cytochrome P450: inhibition of CYP2C9, CYP2C19, and CYP2D6. Drug Metab Dispos 29(1):41–47

    CAS  PubMed  Google Scholar 

  9. Borin MT, Chambers JH, Carel BJ, Freimuth WW, Aksentijevich S, Piergies AA (1997) Pharmacokinetic study of the interaction between rifabutin and delavirdine mesylate in HIV-1 infected patients. Antiviral Res 35(1):53–63

    Article  CAS  PubMed  Google Scholar 

  10. Borin MT, Chambers JH, Carel BJ, Gagnon S, Freimuth WW (1997) Pharmacokinetic study of the interaction between rifampin and delavirdine mesylate. Clin Pharmacol Ther 61(5):544–553

    Article  CAS  PubMed  Google Scholar 

  11. Ferry JJ, Herman BD, Carel BJ, Carlson GF, Batts DH (1998) Pharmacokinetic drug-drug interaction study of delavirdine and indinavir in healthy volunteers. J Acquir Immune Defic Syndr Hum Retrovirol 18(3):252–259

    Article  CAS  PubMed  Google Scholar 

  12. Chiba M, Hensleigh M, Nishime JA, Balani SK, Lin JH (1996) Role of cytochrome P450 3A4 in human metabolism of MK-639, a potent human immunodeficiency virus protease inhibitor. Drug Metab Dispos 24(3):307–314

    CAS  PubMed  Google Scholar 

  13. Hirani VN, Raucy JL, Lasker JM (2004) Conversion of the HIV protease inhibitor nelfinavir to a bioactive metabolite by human liver CYP2C19. Drug Metab Dispos 32(12):1462–1467

    Article  CAS  PubMed  Google Scholar 

  14. Eagling VA, Wiltshire H, Whitcombe IW, Back DJ (2002) CYP3A4-mediated hepatic metabolism of the HIV-1 protease inhibitor saquinavir in vitro. Xenobiotica 32(1):1–17

    Article  CAS  PubMed  Google Scholar 

  15. Morse GD, Fischl MA, Shelton MJ, Cox SR, Driver M, DeRemer M et al (1997) Single-dose pharmacokinetics of delavirdine mesylate and didanosine in patients with human immunodeficiency virus infection. Antimicrob Agents Chemother 41(1):169–174

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Barbier O, Turgeon D, Girard C, Green MD, Tephly TR, Hum DW et al (2000) 3′-azido-3′-deoxythimidine (AZT) is glucuronidated by human UDP-glucuronosyltransferase 2B7 (UGT2B7). Drug Metab Dispos 28(5):497–502

    CAS  PubMed  Google Scholar 

  17. Mugundu GM, Hariparsad N, Desai PB (2010) Impact of ritonavir, atazanavir and their combination on the CYP3A4 induction potential of efavirenz in primary human hepatocytes. Drug Metab Lett 4(1):45–50

    Article  CAS  PubMed  Google Scholar 

  18. Sustiva (2008) Prescribing information. Available at: http://www.accessdata.fda.gov/drugsatfda_docs/label/2008/020972s030,021360s019lbl.pdf. Accessed 19 June 2016

  19. Iribarne C, Berthou F, Carlhant D, Dreano Y, Picart D, Lohezic F et al (1998) Inhibition of methadone and buprenorphine N-dealkylations by three HIV-1 protease inhibitors. Drug Metab Dispos 26(3):257–260

    CAS  PubMed  Google Scholar 

  20. Trapnell CB, Klecker RW, Jamis-Dow C, Collins JM (1998) Glucuronidation of 3′-azido-3′-deoxythymidine (zidovudine) by human liver microsomes: relevance to clinical pharmacokinetic interactions with atovaquone, fluconazole, methadone, and valproic acid. Antimicrob Agents Chemother 42(7):1592–1596

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Gerber JG, Rosenkranz SL, Fichtenbaum CJ, Vega JM, Yang A, Alston BL et al (2005) Effect of efavirenz on the pharmacokinetics of simvastatin, atorvastatin, and pravastatin: results of AIDS Clinical Trials Group 5108 Study. J Acquir Immune Defic Syndr 39(3):307–312

    Article  CAS  PubMed  Google Scholar 

  22. Robertson SM, Maldarelli F, Natarajan V, Formentini E, Alfaro RM, Penzak SR (2008) Efavirenz induces CYP2B6-mediated hydroxylation of bupropion in healthy subjects. J Acquir Immune Defic Syndr 49(5):513–519

    Article  CAS  PubMed  Google Scholar 

  23. Coles R, Kharasch ED (2008) Stereoselective metabolism of bupropion by cytochrome P4502B6 (CYP2B6) and human liver microsomes. Pharm Res 25(6):1405–1411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ji P, Damle B, Xie J, Unger SE, Grasela DM, Kaul S (2008) Pharmacokinetic interaction between efavirenz and carbamazepine after multiple-dose administration in healthy subjects. J Clin Pharmacol 48(8):948–956

    Article  CAS  PubMed  Google Scholar 

  25. Kerr BM, Thummel KE, Wurden CJ, Klein SM, Kroetz DL, Gonzalez FJ et al (1994) Human liver carbamazepine metabolism. Role of CYP3A4 and CYP2C8 in 10,11-epoxide formation. Biochem Pharmacol 47(11):1969–1979

    Article  CAS  PubMed  Google Scholar 

  26. Carten ML, Kiser JJ, Kwara A, Mawhinney S, Cu-Uvin S (2012) Pharmacokinetic interactions between the hormonal emergency contraception, levonorgestrel (Plan B), and Efavirenz. Infect Dis Obstet Gynecol 2012:137192

    Article  PubMed  PubMed Central  Google Scholar 

  27. Obach RS, Cox LM, Tremaine LM (2005) Sertraline is metabolized by multiple cytochrome P450 enzymes, monoamine oxidases, and glucuronyl transferases in human: an in vitro study. Drug Metab Dispos 33(2):262–270

    Article  CAS  PubMed  Google Scholar 

  28. Huang L, Parikh S, Rosenthal PJ, Lizak P, Marzan F, Dorsey G et al (2012) Concomitant efavirenz reduces pharmacokinetic exposure to the antimalarial drug artemether-lumefantrine in healthy volunteers. J Acquir Immune Defic Syndr 61(3):310–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Byakika-Kibwika P, Lamorde M, Mayito J, Nabukeera L, Namakula R, Mayanja-Kizza H et al (2012) Significant pharmacokinetic interactions between artemether/lumefantrine and efavirenz or nevirapine in HIV-infected Ugandan adults. J Antimicrob Chemother 67(9):2213–2221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. van Luin M, Van der Ende ME, Richter C, Visser M, Faraj D, Van der Ven A et al (2010) Lower atovaquone/proguanil concentrations in patients taking efavirenz, lopinavir/ritonavir or atazanavir/ritonavir. AIDS 24(8):1223–1226

    Article  PubMed  Google Scholar 

  31. la Porte CJ, Sabo JP, Beique L, Cameron DW (2009) Lack of effect of efavirenz on the pharmacokinetics of tipranavir-ritonavir in healthy volunteers. Antimicrob Agents Chemother 53(11):4840–4844

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kakuda TN, DeMasi R, van Delft Y, Mohammed P (2013) Pharmacokinetic interaction between etravirine or darunavir/ritonavir and artemether/lumefantrine in healthy volunteers: a two-panel, two-way, two-period, randomized trial. HIV Med 14(7):421–429

    Article  CAS  PubMed  Google Scholar 

  33. Intelence (2009) Prescribing information. Available at: http://www.accessdata.fda.gov/drugsatfda_docs/label/2009/022187s002lbl.pdf. Accessed 19 June 2016

  34. Yanakakis LJ, Bumpus NN (2012) Biotransformation of the antiretroviral drug etravirine: metabolite identification, reaction phenotyping, and characterization of autoinduction of cytochrome P450-dependent metabolism. Drug Metab Dispos 40(4):803–814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hammond KP, Wolfe P, Burton JR Jr, Predhomme JA, Ellis CM, Ray ML et al (2013) Pharmacokinetic interaction between boceprevir and etravirine in HIV/HCV seronegative volunteers. J Acquir Immune Defic Syndr 62(1):67–73

    Article  CAS  PubMed  Google Scholar 

  36. Park JE, Kim KB, Bae SK, Moon BS, Liu KH, Shin JG (2008) Contribution of cytochrome P450 3A4 and 3A5 to the metabolism of atorvastatin. Xenobiotica 38(9):1240–1251

    Article  CAS  PubMed  Google Scholar 

  37. Ku HY, Ahn HJ, Seo KA, Kim H, Oh M, Bae SK et al (2008) The contributions of cytochromes P450 3A4 and 3A5 to the metabolism of the phosphodiesterase type 5 inhibitors sildenafil, udenafil, and vardenafil. Drug Metab Dispos 36(6):986–990

    Article  CAS  PubMed  Google Scholar 

  38. McCance-Katz EF, Moody DE, Morse GD, Ma Q, Rainey PM (2010) Lack of clinically significant drug interactions between nevirapine and buprenorphine. Am J Addict 19(1):30–37

    Article  PubMed  PubMed Central  Google Scholar 

  39. Viramune (2010) Prescribing information. Available at: http://www.accessdata.fda.gov/drugsatfda_docs/label/2010/020933s022,020636s032lbl.pdf. Accessed 19 June 2016

  40. Edurant (2015) Prescribing information. Available at: http://www.edurant.com/shared/product/Edurant/EDURANT-PI.pdf. Accessed 19 June 2016

  41. Weiss J, Haefeli WE (2013) Potential of the novel antiretroviral drug rilpivirine to modulate the expression and function of drug transporters and drug-metabolising enzymes in vitro. Int J Antimicrob Agents 41(5):484–487

    Article  CAS  PubMed  Google Scholar 

  42. McDowell JA, Chittick GE, Ravitch JR, Polk RE, Kerkering TM, Stein DS (1999) Pharmacokinetics of [(14)C]abacavir, a human immunodeficiency virus type 1 (HIV-1) reverse transcriptase inhibitor, administered in a single oral dose to HIV-1-infected adults: a mass balance study. Antimicrob Agents Chemother 43(12):2855–2861

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Videx (2009) Prescribing information. Available at: http://www.accessdata.fda.gov/drugsatfda_docs/label/2009/020156s044lbl.pdf. Accessed 19 June 2016

  44. Emtriva (2012) Prescribing information. Available at: http://www.gilead.com/~/media/files/pdfs/medicines/hiv/emtriva/emtriva_pi.pdf. Accessed 19 June 2016

  45. Epivir (2013) Prescribing information. Available at: https://www.viivhealthcare.com/media/32160/us_epivir.pdf. Accessed 19 June 2016

  46. Zerit (2008) Prescribing information. Available at: http://www.accessdata.fda.gov/drugsatfda_docs/label/2008/020412s029,020413s020lbl.pdf. Accessed 19 June 2016

  47. Viread (2012) Prescribing information. Available at: http://www.accessdata.fda.gov/drugsatfda_docs/label/2012/021356s042,022577s002lbl.pdf. Accessed 19 June 2016

  48. Baker J, Rainey PM, Moody DE, Morse GD, Ma Q, McCance-Katz EF (2010) Interactions between buprenorphine and antiretrovirals: nucleos(t)ide reverse transcriptase inhibitors (NRTI) didanosine, lamivudine, and tenofovir. Am J Addict 19(1):17–29

    Article  PubMed  PubMed Central  Google Scholar 

  49. Wenning LA, Friedman EJ, Kost JT, Breidinger SA, Stek JE, Lasseter KC et al (2008) Lack of a significant drug interaction between raltegravir and tenofovir. Antimicrob Agents Chemother 52(9):3253–3258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Retrovir (2008) Prescribing information. Available at: http://www.accessdata.fda.gov/drugsatfda_docs/label/2008/019910s033lbl.pdf. Accessed 19 June 2016

  51. Hulskotte EG, Feng HP, Xuan F, van Zutven MG, Treitel MA, Hughes EA et al (2013) Pharmacokinetic interactions between the hepatitis C virus protease inhibitor boceprevir and ritonavir-boosted HIV-1 protease inhibitors atazanavir, darunavir, and lopinavir. Clin Infect Dis 56(5):718–726

    Article  CAS  PubMed  Google Scholar 

  52. Chu X, Cai X, Cui D, Tang C, Ghosal A, Chan G et al (2013) In vitro assessment of drug-drug interaction potential of boceprevir associated with drug metabolizing enzymes and transporters. Drug Metab Dispos 41(3):668–681

    Article  CAS  PubMed  Google Scholar 

  53. Zheng J (2002) Clinical pharmacology and biopharmaceutics review (21–567). Available at: http://www.accessdata.fda.gov/drugsatfda_docs/nda/2003/21-567_Reyataz_BioPharmr_P1.pdf. Accessed 6 June 2016

  54. Reyataz (2015) Prescribing information. Available at: http://packageinserts.bms.com/pi/pi_reyataz.pdf. Accessed 19 June 2016

  55. Busti AJ, Bain AM, Hall RG 2nd, Bedimo RG, Leff RD, Meek C et al (2008) Effects of atazanavir/ritonavir or fosamprenavir/ritonavir on the pharmacokinetics of rosuvastatin. J Cardiovasc Pharmacol 51(6):605–610

    Article  CAS  PubMed  Google Scholar 

  56. van der Lee M, Sankatsing R, Schippers E, Vogel M, Fatkenheuer G, van der Ven A et al (2007) Pharmacokinetics and pharmacodynamics of combined use of lopinavir/ritonavir and rosuvastatin in HIV-infected patients. Antivir Ther 12(7):1127–1132

    PubMed  Google Scholar 

  57. Baldwin SJ, Clarke SE, Chenery RJ (1999) Characterization of the cytochrome P450 enzymes involved in the in vitro metabolism of rosiglitazone. Br J Clin Pharmacol 48(3):424–432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Burger DM, Huisman A, Van Ewijk N, Neisingh H, Van Uden P, Rongen GA et al (2008) The effect of atazanavir and atazanavir/ritonavir on UDP-glucuronosyltransferase using lamotrigine as a phenotypic probe. Clin Pharmacol Ther 84(6):698–703

    Article  CAS  PubMed  Google Scholar 

  59. Prezista (2015) Prescribing information. Available at: https://www.prezista.com/sites/default/files/pdf/us_package_insert.pdf. Accessed 19 June 2016

  60. Chapron B, Risler L, Phillips B, Collins C, Thummel K, Shen D (2015) Reversible, time-dependent inhibition of CYP3A-mediated metabolism of midazolam and tacrolimus by telaprevir in human liver microsomes. J Pharm Pharm Sci 18(1):101–111

    Article  PubMed  Google Scholar 

  61. Arya V (2005) Clinical pharmacology and biopharmaceutics review (21–976). Available at: http://www.accessdata.fda.gov/drugsatfda_docs/nda/2006/021976s000_Sprycel_ClinPharmR.pdf. Accessed 6 June 2016

  62. Samineni D, Desai PB, Sallans L, Fichtenbaum CJ (2012) Steady-state pharmacokinetic interactions of darunavir/ritonavir with lipid-lowering agent rosuvastatin. J Clin Pharmacol 52(6):922–931

    Article  CAS  PubMed  Google Scholar 

  63. Neuvonen PJ (2010) Drug interactions with HMG-CoA reductase inhibitors (statins): the importance of CYP enzymes, transporters and pharmacogenetics. Curr Opin Investig Drugs 11(3):323–332

    CAS  PubMed  Google Scholar 

  64. Liu L, Mugundu GM, Kirby BJ, Samineni D, Desai PB, Unadkat JD (2012) Quantification of human hepatocyte cytochrome P450 enzymes and transporters induced by HIV protease inhibitors using newly validated LC-MS/MS cocktail assays and RT-PCR. Biopharm Drug Dispos 33(4):207–217

    Article  PubMed  Google Scholar 

  65. Kharasch ED, Hoffer C, Whittington D, Sheffels P (2004) Role of hepatic and intestinal cytochrome P450 3A and 2B6 in the metabolism, disposition, and miotic effects of methadone. Clin Pharmacol Ther 76(3):250–269

    Article  CAS  PubMed  Google Scholar 

  66. Pearce RE, Lu W, Wang Y, Uetrecht JP, Correia MA, Leeder JS (2008) Pathways of carbamazepine bioactivation in vitro. III. The role of human cytochrome P450 enzymes in the formation of 2,3-dihydroxycarbamazepine. Drug Metab Dispos 36(8):1637–1649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Karam WG, Goldstein JA, Lasker JM, Ghanayem BI (1996) Human CYP2C19 is a major omeprazole 5-hydroxylase, as demonstrated with recombinant cytochrome P450 enzymes. Drug Metab Dispos 24(10):1081–1087

    CAS  PubMed  Google Scholar 

  68. Jornil J, Jensen KG, Larsen F, Linnet K (2010) Identification of cytochrome P450 isoforms involved in the metabolism of paroxetine and estimation of their importance for human paroxetine metabolism using a population-based simulator. Drug Metab Dispos 38(3):376–385

    Article  CAS  PubMed  Google Scholar 

  69. Lexiva (2009) Prescribing information. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2009/021548s021,022116s005lbl.pdf. Accessed 19 June 2016

  70. von Moltke LL, Durol AL, Duan SX, Greenblatt DJ (2000) Potent mechanism-based inhibition of human CYP3A in vitro by amprenavir and ritonavir: comparison with ketoconazole. Eur J Clin Pharmacol 56(3):259–261

    Article  Google Scholar 

  71. Bruggemann RJ, van Luin M, Colbers EP, van den Dungen MW, Pharo C, Schouwenberg BJ et al (2010) Effect of posaconazole on the pharmacokinetics of fosamprenavir and vice versa in healthy volunteers. J Antimicrob Chemother 65(10):2188–2194

    Article  PubMed  Google Scholar 

  72. van der Lee MJ, Blenke AA, Rongen GA, Verwey-van Wissen CP, Koopmans PP, Pharo C et al (2007) Interaction study of the combined use of paroxetine and fosamprenavir-ritonavir in healthy subjects. Antimicrob Agents Chemother 51(11):4098–4104

    Article  PubMed  PubMed Central  Google Scholar 

  73. Neuvonen PJ, Niemi M, Backman JT (2006) Drug interactions with lipid-lowering drugs: mechanisms and clinical relevance. Clin Pharmacol Ther 80(6):565–581

    Article  CAS  PubMed  Google Scholar 

  74. Gruber VA, Rainey PM, Moody DE, Morse GD, Ma Q, Prathikanti S et al (2012) Interactions between buprenorphine and the protease inhibitors darunavir-ritonavir and fosamprenavir-ritonavir. Clin Infect Dis 54(3):414–423

    Article  CAS  PubMed  Google Scholar 

  75. Crixivan (2008) Prescribing information. Available at: http://www.accessdata.fda.gov/drugsatfda_docs/label/2008/020685s066lbl.pdf. Accessed 19 June 2016

  76. Viracept (2011) Prescribing information. Available at: http://www.accessdata.fda.gov/drugsatfda_docs/label/2011/020778s035,020779s056,021503s017lbl.pdf. Accessed 19 June 2016

  77. Kaletra (2013) Prescribing information. Available at: http://www.accessdata.fda.gov/drugsatfda_docs/label/2013/021226s037lbl.pdf. Accessed 19 June 2016

  78. Kredo T, Mauff K, Workman L, Van der Walt JS, Wiesner L, Smith PJ et al (2016) The interaction between artemether-lumefantrine and lopinavir/ritonavir-based antiretroviral therapy in HIV-1 infected patients. BMC Infect Dis 16:30. doi:10.1186/s12879-016-1345-1 (Published online 2016 Jan 27)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Hogeland GW, Swindells S, McNabb JC, Kashuba AD, Yee GC, Lindley CM (2007) Lopinavir/ritonavir reduces bupropion plasma concentrations in healthy subjects. Clin Pharmacol Ther 81(1):69–75

    Article  CAS  PubMed  Google Scholar 

  80. Bruce RD, Altice FL, Moody DE, Morse GD, Andrews L, Lin SN et al (2010) Pharmacokinetic interactions between buprenorphine/naloxone and once-daily lopinavir/ritonavir. J Acquir Immune Defic Syndr 54(5):511–514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. van der Lee MJ, Dawood L, ter Hofstede HJ, de Graaff-Teulen MJ, van Ewijk-Beneken Kolmer EW, Caliskan-Yassen N et al (2006) Lopinavir/ritonavir reduces lamotrigine plasma concentrations in healthy subjects. Clin Pharmacol Ther 80(2):159–168

    Article  PubMed  Google Scholar 

  82. Lim ML, Min SS, Eron JJ, Bertz RJ, Robinson M, Gaedigk A et al (2004) Coadministration of lopinavir/ritonavir and phenytoin results in two-way drug interaction through cytochrome P-450 induction. J Acquir Immune Defic Syndr 36(5):1034–1040

    Article  CAS  PubMed  Google Scholar 

  83. Invirase (2010) Prescribing information. Available at: http://www.accessdata.fda.gov/drugsatfda_docs/label/2010/020628s032,021785s009lbl.pdf. Accessed 19 June 2016

  84. Fichtenbaum CJ, Gerber JG, Rosenkranz SL, Segal Y, Aberg JA, Blaschke T et al (2002) Pharmacokinetic interactions between protease inhibitors and statins in HIV seronegative volunteers: ACTG Study A5047. AIDS 16(4):569–577

    Article  CAS  PubMed  Google Scholar 

  85. Aptivus (2009) Prescribing information. Available at: http://www.accessdata.fda.gov/drugsatfda_docs/label/2009/021814s006,022292s001lbl.pdf. Accessed 19 June 2016

  86. Fuzeon (2011) Prescribing information. Available at: http://hivdb.stanford.edu/pages/linksPages/ENF_PI.pdf. Accessed 19 June 2016

  87. Selzentry (2007) Prescribing information. Available at: http://www.accessdata.fda.gov/drugsatfda_docs/label/2007/022128lbl.pdf. Accessed 19 June 2016

  88. Gilbertson TA, Liu L, York DA, Bray GA (1998) Dietary fat preferences are inversely correlated with peripheral gustatory fatty acid sensitivity. Ann N Y Acad Sci 855:165–168

    Article  CAS  PubMed  Google Scholar 

  89. Vourvahis M, Plotka A, Mendes da Costa L, Fang A, Heera J (2013) Pharmacokinetic interaction between maraviroc and fosamprenavir-ritonavir: an open-label, fixed-sequence study in healthy subjects. Antimicrob Agents Chemother 57(12):6158–6164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Tivicay (2013) Prescribing information. Available at: http://www.accessdata.fda.gov/drugsatfda_docs/label/2013/204790lbl.pdf. Accessed 19 June 2016

  91. Zong J, Borland J, Jerva F, Wynne B, Choukour M, Song I (2014) The effect of dolutegravir on the pharmacokinetics of metformin in healthy subjects. J Int AIDS Soc 17(4 Suppl 3):19584

    PubMed  PubMed Central  Google Scholar 

  92. Song IH, Zong J, Borland J, Jerva F, Wynne B, Zamek-Gliszczynski MJ et al (2016) The effect of dolutegravir on the pharmacokinetics of metformin in healthy subjects. J Acquir Immune Defic Syndr 72(4):400–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Vitekta (2014) Prescribing information. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2014/203093s000lbl.pdf. Accessed 19 June 2016

  94. Isentress (2011) Prescribing information. Available at: http://www.accessdata.fda.gov/drugsatfda_docs/label/2011/022145s018lbl.pdf. Accessed 19 June 2016

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary H. H. Ensom .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Kiang, T.K.L., Wilby, K.J., Ensom, M.H.H. (2016). Clinical Drug-Drug Interaction Data: Effects of Antiretroviral Agents on Co-administered Drugs. In: Kiang, T., Wilby, K., Ensom, M. (eds) Pharmacokinetic and Pharmacodynamic Drug Interactions Associated with Antiretroviral Drugs. Adis, Singapore. https://doi.org/10.1007/978-981-10-2113-8_6

Download citation

Publish with us

Policies and ethics