Skip to main content

Recent Trends in ADPKD Research

  • Chapter
  • First Online:
Cystogenesis

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 933))

Abstract

Autosomal Dominant Polycystic Kidney Disease (ADPKD) is one of the most common inherited disorders. It is the fourth leading cause of renal replacement and renal failure worldwide. Mutations in PKD1 or PKD2 cause ADPKD. Patients with ADPKD show progressive growth of renal cysts filled with cystic fluid, leading to end-stage renal disease (ESRD) and renal failure by their sixth decade of life. Currently, there are no curative treatments for ADPKD. Therefore, patients require dialysis or kidney transplantation. To date, researchers have elucidated many of the mechanisms that cause ADPKD and developed many methods to diagnose the disease. ADPKD is related to growth factors, signaling pathways, cell proliferation, apoptosis, inflammation, the immune system, structural abnormalities, epigenetic mechanisms, microRNAs, and so on. Various therapies have been reported to slow the progression of ADPKD and alleviate its symptoms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bechtel W, McGoohan S, Zeisberg EM, Muller GA, Kalbacher H, Salant DJ, Muller CA, Kalluri R, Zeisberg M (2010) Methylation determines fibroblast activation and fibrogenesis in the kidney. Nat Med 16(5):544–550. doi:10.1038/nm.2135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bell PD, Fitzgibbon W, Sas K, Stenbit AE, Amria M, Houston A, Reichert R, Gilley S, Siegal GP, Bissler J, Bilgen M, Chou PC, Guay-Woodford L, Yoder B, Haycraft CJ, Siroky B (2011) Loss of primary cilia upregulates renal hypertrophic signaling and promotes cystogenesis. J Am Soc Nephrol 22(5):839–848. doi:10.1681/ASN.2010050526

    Article  PubMed  PubMed Central  Google Scholar 

  • Buchholz B, Klanke B, Schley G, Bollag G, Tsai J, Kroening S, Yoshihara D, Wallace DP, Kraenzlin B, Gretz N, Hirth P, Eckardt KU, Bernhardt WM (2011) The Raf kinase inhibitor PLX5568 slows cyst proliferation in rat polycystic kidney disease but promotes renal and hepatic fibrosis. Nephrol Dial Transplant 26(11):3458–3465. doi:10.1093/ndt/gfr432

    Article  CAS  PubMed  Google Scholar 

  • Catania JM, Chen G, Parrish AR (2007) Role of matrix metalloproteinases in renal pathophysiologies. Am J Physiol Renal Physiol 292(3):F905–F911. doi:10.1152/ajprenal.00421.2006

    Article  CAS  PubMed  Google Scholar 

  • Distefano G, Boca M, Rowe I, Wodarczyk C, Ma L, Piontek KB, Germino GG, Pandolfi PP, Boletta A (2009) Polycystin-1 regulates extracellular signal-regulated kinase-dependent phosphorylation of tuberin to control cell size through mTOR and its downstream effectors S6K and 4EBP1. Mol Cell Biol 29(9):2359–2371. doi:10.1128/MCB.01259-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du J, Wilson PD (1995) Abnormal polarization of EGF receptors and autocrine stimulation of cyst epithelial growth in human ADPKD. Am J Physiol 269(2 Pt 1):C487–C495

    CAS  PubMed  Google Scholar 

  • Ekser B, Rigotti P (2010) Images in clinical medicine. Autosomal dominant polycystic kidney disease. N Engl J Med 363(1):71. doi:10.1056/NEJMicm0905399

    Article  CAS  PubMed  Google Scholar 

  • Elliott J, Zheleznova NN, Wilson PD (2011) c-Src inactivation reduces renal epithelial cell-matrix adhesion, proliferation, and cyst formation. Am J Physiol Cell Physiol 301(2):C522–C529. doi:10.1152/ajpcell.00163.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fedeles SV, Gallagher AR, Somlo S (2014) Polycystin-1: a master regulator of intersecting cystic pathways. Trends Mol Med 20(5):251–260. doi:10.1016/j.molmed.2014.01.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Gonzalo FR, Reiter JF (2012) Scoring a backstage pass: mechanisms of ciliogenesis and ciliary access. J Cell Biol 197(6):697–709. doi:10.1083/jcb.201111146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geiger B, Bershadsky A, Pankov R, Yamada KM (2001) Transmembrane crosstalk between the extracellular matrix--cytoskeleton crosstalk. Nat Rev Mol Cell Biol 2(11):793–805. doi:10.1038/35099066

    Article  CAS  PubMed  Google Scholar 

  • Gregoire JR, Torres VE, Holley KE, Farrow GM (1987) Renal epithelial hyperplastic and neoplastic proliferation in autosomal dominant polycystic kidney disease. Am J Kidney Dis 9(1):27–38

    Article  CAS  PubMed  Google Scholar 

  • Hassane S, Leonhard WN, van der Wal A, Hawinkels LJ, Lantinga-van Leeuwen IS, ten Dijke P, Breuning MH, de Heer E, Peters DJ (2010) Elevated TGFbeta-Smad signalling in experimental Pkd1 models and human patients with polycystic kidney disease. J Pathol 222(1):21–31. doi:10.1002/path.2734

    CAS  PubMed  Google Scholar 

  • Hildebrandt F, Otto E (2005) Cilia and centrosomes: a unifying pathogenic concept for cystic kidney disease? Nat Rev Genet 6(12):928–940. doi:10.1038/nrg1727

    Article  CAS  PubMed  Google Scholar 

  • Hou X, Mrug M, Yoder BK, Lefkowitz EJ, Kremmidiotis G, D’Eustachio P, Beier DR, Guay-Woodford LM (2002) Cystin, a novel cilia-associated protein, is disrupted in the cpk mouse model of polycystic kidney disease. J Clin Invest 109(4):533–540. doi:10.1172/JCI14099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hughes J, Ward CJ, Peral B, Aspinwall R, Clark K, San Millan JL, Gamble V, Harris PC (1995) The polycystic kidney disease 1 (PKD1) gene encodes a novel protein with multiple cell recognition domains. Nat Genet 10(2):151–160. doi:10.1038/ng0695-151

    Article  CAS  PubMed  Google Scholar 

  • Karihaloo A, Koraishy F, Huen SC, Lee Y, Merrick D, Caplan MJ, Somlo S, Cantley LG (2011) Macrophages promote cyst growth in polycystic kidney disease. J Am Soc Nephrol 22(10):1809–1814. doi:10.1681/ASN.2011010084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katz SK, Hakki A, Miller AS, Finkelstein SD (1989) Ultrastructural tubular basement membrane lesions in adult polycystic kidney disease. Ann Clin Lab Sci 19(5):352–359

    CAS  PubMed  Google Scholar 

  • Lakhia R, Hajarnis S, Williams D, Aboudehen K, Yheskel M, Xing C, Hatley ME, Torres VE, Wallace DP, Patel V (2015) MicroRNA-21 aggravates cyst growth in a model of polycystic kidney disease. J Am Soc Nephrol. doi:10.1681/ASN.2015060634

    PubMed  Google Scholar 

  • LaRiviere WB, Irazabal MV, Torres VE (2015) Novel therapeutic approaches to autosomal dominant polycystic kidney disease. Transl Res 165(4):488–498. doi:10.1016/j.trsl.2014.11.003

    Article  CAS  PubMed  Google Scholar 

  • Lee SO, Masyuk T, Splinter P, Banales JM, Masyuk A, Stroope A, Larusso N (2008) MicroRNA15a modulates expression of the cell-cycle regulator Cdc25A and affects hepatic cystogenesis in a rat model of polycystic kidney disease. J Clin Invest 118(11):3714–3724. doi:10.1172/JCI34922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X (2011) Epigenetics and autosomal dominant polycystic kidney disease. Biochim Biophys Acta 1812(10):1213–1218. doi:10.1016/j.bbadis.2010.10.008

    Article  CAS  PubMed  Google Scholar 

  • Mangos S, Lam PY, Zhao A, Liu Y, Mudumana S, Vasilyev A, Liu A, Drummond IA (2010) The ADPKD genes pkd1a/b and pkd2 regulate extracellular matrix formation. Dis Model Mech 3(5–6):354–365. doi:10.1242/dmm.003194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez JR, Grantham JJ (1995) Polycystic kidney disease: etiology, pathogenesis, and treatment. Dis Mon 41(11):693–765

    Article  CAS  PubMed  Google Scholar 

  • Nakamura T, Ushiyama C, Suzuki S, Ebihara I, Shimada N, Koide H (2000) Elevation of serum levels of metalloproteinase-1, tissue inhibitor of metalloproteinase-1 and type IV collagen, and plasma levels of metalloproteinase-9 in polycystic kidney disease. Am J Nephrol 20(1):32–36. doi:13552

    Article  CAS  PubMed  Google Scholar 

  • Omori S, Hida M, Fujita H, Takahashi H, Tanimura S, Kohno M, Awazu M (2006) Extracellular signal-regulated kinase inhibition slows disease progression in mice with polycystic kidney disease. J Am Soc Nephrol 17(6):1604–1614. doi:10.1681/ASN.2004090800

    Article  CAS  PubMed  Google Scholar 

  • Patel V, Williams D, Hajarnis S, Hunter R, Pontoglio M, Somlo S, Igarashi P (2013) miR-17 ~ 92 miRNA cluster promotes kidney cyst growth in polycystic kidney disease. Proc Natl Acad Sci U S A 110(26):10765–10770. doi:10.1073/pnas.1301693110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paul BM, Vanden Heuvel GB (2014) Kidney: polycystic kidney disease. Wiley Interdiscip Rev Dev Biol 3(6):465–487. doi:10.1002/wdev.152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rae F, Woods K, Sasmono T, Campanale N, Taylor D, Ovchinnikov DA, Grimmond SM, Hume DA, Ricardo SD, Little MH (2007) Characterisation and trophic functions of murine embryonic macrophages based upon the use of a Csf1r-EGFP transgene reporter. Dev Biol 308(1):232–246. doi:10.1016/j.ydbio.2007.05.027

    Article  CAS  PubMed  Google Scholar 

  • Renken C, Fischer DC, Kundt G, Gretz N, Haffner D (2011) Inhibition of mTOR with sirolimus does not attenuate progression of liver and kidney disease in PCK rats. Nephrol Dial Transplant 26(1):92–100. doi:10.1093/ndt/gfq384

    Article  CAS  PubMed  Google Scholar 

  • Rossetti S, Strmecki L, Gamble V, Burton S, Sneddon V, Peral B, Roy S, Bakkaloglu A, Komel R, Winearls CG, Harris PC (2001) Mutation analysis of the entire PKD1 gene: genetic and diagnostic implications. Am J Hum Genet 68(1):46–63. doi:10.1086/316939

    Article  CAS  PubMed  Google Scholar 

  • Shibazaki S, Yu Z, Nishio S, Tian X, Thomson RB, Mitobe M, Louvi A, Velazquez H, Ishibe S, Cantley LG, Igarashi P, Somlo S (2008) Cyst formation and activation of the extracellular regulated kinase pathway after kidney specific inactivation of Pkd1. Hum Mol Genet 17(11):1505–1516. doi:10.1093/hmg/ddn039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shillingford JM, Murcia NS, Larson CH, Low SH, Hedgepeth R, Brown N, Flask CA, Novick AC, Goldfarb DA, Kramer-Zucker A, Walz G, Piontek KB, Germino GG, Weimbs T (2006) The mTOR pathway is regulated by polycystin-1, and its inhibition reverses renal cystogenesis in polycystic kidney disease. Proc Natl Acad Sci U S A 103(14):5466–5471. doi:10.1073/pnas.0509694103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song X, Di Giovanni V, He N, Wang K, Ingram A, Rosenblum ND, Pei Y (2009) Systems biology of autosomal dominant polycystic kidney disease (ADPKD): computational identification of gene expression pathways and integrated regulatory networks. Hum Mol Genet 18(13):2328–2343. doi:10.1093/hmg/ddp165

    Article  CAS  PubMed  Google Scholar 

  • Spirli C, Okolicsanyi S, Fiorotto R, Fabris L, Cadamuro M, Lecchi S, Tian X, Somlo S, Strazzabosco M (2010) ERK1/2-dependent vascular endothelial growth factor signaling sustains cyst growth in polycystin-2 defective mice. Gastroenterology 138(1):360–371. e367. 10.1053/j.gastro.2009.09.005

    Article  CAS  PubMed  Google Scholar 

  • Sun L, Zhu J, Wu M, Sun H, Zhou C, Fu L, Xu C, Mei C (2015) Inhibition of MiR-199a-5p reduced cell proliferation in autosomal dominant polycystic kidney disease through targeting CDKN1C. Med Sci Monit 21:195–200. doi:10.12659/MSM.892141

    Article  PubMed  PubMed Central  Google Scholar 

  • Sweeney WE Jr, von Vigier RO, Frost P, Avner ED (2008) Src inhibition ameliorates polycystic kidney disease. J Am Soc Nephrol 19(7):1331–1341. doi:10.1681/ASN.2007060665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swenson-Fields KI, Vivian CJ, Salah SM, Peda JD, Davis BM, van Rooijen N, Wallace DP, Fields TA (2013) Macrophages promote polycystic kidney disease progression. Kidney Int 83(5):855–864. doi:10.1038/ki.2012.446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Talbot JJ, Song X, Wang X, Rinschen MM, Doerr N, LaRiviere WB, Schermer B, Pei YP, Torres VE, Weimbs T (2014) The cleaved cytoplasmic tail of polycystin-1 regulates Src-dependent STAT3 activation. J Am Soc Nephrol 25(8):1737–1748. doi:10.1681/ASN.2013091026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan YC, Blumenfeld J, Rennert H (2011) Autosomal dominant polycystic kidney disease: genetics, mutations and microRNAs. Biochim Biophys Acta 1812(10):1202–1212. doi:10.1016/j.bbadis.2011.03.002

    Article  CAS  PubMed  Google Scholar 

  • Tao Y, Kim J, Schrier RW, Edelstein CL (2005) Rapamycin markedly slows disease progression in a rat model of polycystic kidney disease. J Am Soc Nephrol 16(1):46–51. doi:10.1681/ASN.2004080660

    Article  CAS  PubMed  Google Scholar 

  • Wallace DP, Quante MT, Reif GA, Nivens E, Ahmed F, Hempson SJ, Blanco G, Yamaguchi T (2008) Periostin induces proliferation of human autosomal dominant polycystic kidney cells through alphaV-integrin receptor. Am J Physiol Renal Physiol 295(5):F1463–F1471. doi:10.1152/ajprenal.90266.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weimbs T (2007) Polycystic kidney disease and renal injury repair: common pathways, fluid flow, and the function of polycystin-1. Am J Physiol Renal Physiol 293(5):F1423–F1432. doi:10.1152/ajprenal.00275.2007

    Article  CAS  PubMed  Google Scholar 

  • Weimbs T (2011) Third-hit signaling in renal cyst formation. J Am Soc Nephrol 22(5):793–795. doi:10.1681/ASN.2011030284

    Article  PubMed  Google Scholar 

  • Wilson PD, Burrow CR (1999) Cystic diseases of the kidney: role of adhesion molecules in normal and abnormal tubulogenesis. Exp Nephrol 7(2):114–124. doi:20592

    Article  CAS  PubMed  Google Scholar 

  • Wilson PD, Norman JT, Kuo NT, Burrow CR (1996) Abnormalities in extracellular matrix regulation in autosomal dominant polycystic kidney disease. Contrib Nephrol 118:126–134

    Article  CAS  PubMed  Google Scholar 

  • Wilson PD, Geng L, Li X, Burrow CR (1999) The PKD1 gene product, “polycystin-1,” is a tyrosine-phosphorylated protein that colocalizes with alpha2beta1-integrin in focal clusters in adherent renal epithelia. Lab Invest 79(10):1311–1323

    CAS  PubMed  Google Scholar 

  • Wu G, Markowitz GS, Li L, D’Agati VD, Factor SM, Geng L, Tibara S, Tuchman J, Cai Y, Park JH, van Adelsberg J, Hou H Jr, Kucherlapati R, Edelmann W, Somlo S (2000) Cardiac defects and renal failure in mice with targeted mutations in Pkd2. Nat Genet 24(1):75–78. doi:10.1038/71724

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi T, Reif GA, Calvet JP, Wallace DP (2010) Sorafenib inhibits cAMP-dependent ERK activation, cell proliferation, and in vitro cyst growth of human ADPKD cyst epithelial cells. Am J Physiol Renal Physiol 299(5):F944–F951. doi:10.1152/ajprenal.00387.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye M, Grantham JJ (1993) The secretion of fluid by renal cysts from patients with autosomal dominant polycystic kidney disease. N Engl J Med 329(5):310–313. doi:10.1056/NEJM199307293290503

    Article  CAS  PubMed  Google Scholar 

  • Zeltner R, Hilgers KF, Schmieder RE, Porst M, Schulze BD, Hartner A (2008) A promoter polymorphism of the alpha 8 integrin gene and the progression of autosomal-dominant polycystic kidney disease. Nephron Clin Pract 108(3):c169–c175. doi:10.1159/000116887

    Article  CAS  PubMed  Google Scholar 

  • Zhou J (2009) Polycystins and primary cilia: primers for cell cycle progression. Annu Rev Physiol 71:83–113. doi:10.1146/annurev.physiol.70.113006.100621

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong Hoon Park .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Shin, Y.B., Park, J.H. (2016). Recent Trends in ADPKD Research. In: Park, J., Ahn, C. (eds) Cystogenesis. Advances in Experimental Medicine and Biology, vol 933. Springer, Singapore. https://doi.org/10.1007/978-981-10-2041-4_1

Download citation

Publish with us

Policies and ethics