Skip to main content
  • 1968 Accesses

Abstract

There are many approaches that can be used to design a data-driven diagnosis algorithm. Usually, we divide them into three strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Altug S, Chow MY, Trussell HJ (1999) Fuzzy inference systems implemented on neural architectures for motor fault detection and diagnosis. IEEE Trans Indus Electron 46(6):1069–1079

    Article  Google Scholar 

  • Bauer E, Kohavi R (1999) An empirical comparison of voting classification algorithms: bagging, boosting, and variants. Mach Learn 36:105–139

    Article  Google Scholar 

  • Benbouzid MEH, Nejjari H (2001) A simple fuzzy logic approach for induction motors stator condition monitoring. In: Proceedings of the IEEE IEMDC2001, pp 634–639

    Google Scholar 

  • Breiman L (1996) Bagging predictors. Mach Learn 26(2):123–140

    MATH  Google Scholar 

  • Breiman L, Friedman JH, Olshen RA, Stone CJ (1984) Classification and regression trees. Wadsworth Inc, Belmont, California

    MATH  Google Scholar 

  • Breiman L (2001) Random forests. Mach Learn 45(1):5–32

    Article  MathSciNet  MATH  Google Scholar 

  • Breiman L (2006) Random forest user notes, Statistics Department, Univ. of California, Berkeley, ftp://stat.berkeley.edu/pub/users/breiman/notes_on_random_forests_v2.pdf

  • Briem GJ, Benediktsson JA, Sveinsson JR (2002) Multiple classifiers applied to multisource remote sensing data. IEEE Trans Geosci Remote Sens 40:2291–2299

    Article  Google Scholar 

  • Carpenter GA, Grossberg S (1988) The ART of adaptive pattern recognition by a self-organizing neural network. IEEE Trans Computer 21(3):77–88

    Google Scholar 

  • Carpenter GA, Grossberg S (1987) ART2: self-organization of stable category recognition codes for analog input patterns. Appl Opt 26(23):217–231

    Google Scholar 

  • Carpenter GA, Grossberg S (1992) A self-organizing neural network. IEEE Commun Mag 30(9):38–49

    Article  Google Scholar 

  • Cristianini N, Shawe-Taylor J (2000) An introduction to support vector machines. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Daubechies I (1990) The wavelet transform, time-frequency localization and signal analysis. IEEE Trans Inform Theory 36:961–1007

    Article  MathSciNet  MATH  Google Scholar 

  • Di X, Han T, Yang BS (2006) Application of random forest algorithm in machine fault diagnosis. Inaugural World Congress on Engineering Asset Management, Gold Coast, Australia

    Google Scholar 

  • Dietterich TG (2002) Ensemble learning. In: Arbib MA (ed) The handbook of brain theory and neural networks. The MIT Press, Cambridge, MA

    Google Scholar 

  • Duda RO, Hart PE, Stork DG (2001) Pattern classification. Wiley-Interscience, New York

    MATH  Google Scholar 

  • Duffin RJ, Schaeffer A (1952) A class of nonharmonic Fourier series. Trans Am Math Soc 72:341–366

    Article  MathSciNet  MATH  Google Scholar 

  • Gislason PO, Benediktsson JA, Sveinsson JR (2006) Random forests for land cover classification. Pattern Recogn Lett 27(4):294–300

    Article  Google Scholar 

  • Goldberg GE (1989) Genetic algorithm in search, optimization and machine learning. Addison Wesley, New York

    MATH  Google Scholar 

  • Goode P, Chow MY (1995) Using a neural/fuzzy to extract knowledge of incipient fault in induction motor: part 1-methodology. IEEE Trans Indus Electron 42(2):131–138

    Article  Google Scholar 

  • Ham JS, Chen Y, Crawford MM, Ghosh J (2005) Investigation of the random forest framework for classification of hyperspectral data. IEEE Trans Geosci Remote Sens 43(3):492–501

    Article  Google Scholar 

  • Jang JSR, Sun CT, Mizutani E (1996) Neuro-fuzzy and soft computing: a computational approach to learning and machine intelligent. Prentice Hall

    Google Scholar 

  • Jang JSR (1994) Structure determination in fuzzy modeling: a fuzzy CART approach. In: Proceedings of the IEEE international conference on fuzzy systems, pp 1–6

    Google Scholar 

  • Jang JSR (1993) ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans Syst Man Cybernet 23(3):665–687

    Article  Google Scholar 

  • Joelsson SL, Benediktsson JA, Sveinsson JR (2005) Random forest classifiers for hyperspectral data. IEEE Publications, pp 160–163

    Google Scholar 

  • Kohonen T (1992) LVQ_PAK—The learning vector quantization program package. Department of Technical, Physics, Helsinki University of Technology

    Google Scholar 

  • Kohonen T (1995) Self-organizing maps. Springer, Berlin

    Book  MATH  Google Scholar 

  • Kumar R, Jayaraman VK, Kulkarni RD (2005) An SVM classifier incorporating simultaneous noise reduction and feature selection: illustrative case examples. Pattern Recogn 38:41–49

    Article  Google Scholar 

  • Lei Y, He Z, Zi Y, Hu Q (2007) Fault diagnosis of rotating machinery based on multiple ANFIS combination with GAs, Mechanical Systems and Signal Processing (in press)

    Google Scholar 

  • Liobet E, Hines EL, Gardner JW, Bartlett PN, Mottram TT (1999) Fuzzy ARTMAP based electronic nose data analysis. Sens Actuators B 61:183–190

    Article  Google Scholar 

  • Lou X, Loparo KA (2004) Bearing fault diagnosis based on wavelet transform and fuzzy inference. Mech Syst Signal Process 18:1077–1097

    Article  Google Scholar 

  • Novikoff AB (1962) On convergence proofs on perceptron. In: Symposium on the mathematical theory of automata, vol 12, pp 615–622

    Google Scholar 

  • Osuna E, Freund RR, Girosi FF (1997) Improved training algorithm for support vector machines. In: Proceeding of IEEE neural networks for signal processing, pp 276–287

    Google Scholar 

  • Pal M (2005) Random forest classifier for remote sensing classification. Int J Remote Sens 26(1):217–222

    Article  Google Scholar 

  • Platt J (1999) Fast training of support vector machines using sequential minimal optimization. In: Scholkopf B et al (eds) Advances in kernel methods − support vector learning. MIT Press, Cambridge, pp 185–208

    Google Scholar 

  • Quinlan JR (1986) C4.5: programs for machine learning. Morgan Kaufmann, San Mateo, CA

    Google Scholar 

  • Quinlan JR (1986b) Induction of decision trees. Mach Learn 1:81–106

    Google Scholar 

  • Remlinger K (2003) Introduction and application of random forest on high throughput screening data from drug discovery. In: proceedings of workshop for the SAMSI program on data mining and machine learning, pp 1–6

    Google Scholar 

  • Schapire RE (1990) The strength of weak learnability. Mach Learn 5(2):197–227

    Google Scholar 

  • Shukri M, Khalid M, Yusuf R, Shafawi M (2004) Induction machine diagnostic using adaptive neuron fuzzy inference system. In: Negoita M Gh et al (eds) KES 2004, pp 380–387

    Google Scholar 

  • Smola A, Scholköpf B, Müller KR (1998) The connection between regularization operators and support vector kernels. Neural Network 11:637–649

    Article  Google Scholar 

  • Sugeno M, Kang GT (1988) Structure identification of fuzzy model. Fuzzy Sets Syst 28:15–33

    Article  MathSciNet  MATH  Google Scholar 

  • Vapnik VN (1982) Estimation dependences based on empirical data. Springer, Berlin

    MATH  Google Scholar 

  • Vapnik VN (1995) The nature of statistical learning theory. Springer, New York

    Book  MATH  Google Scholar 

  • Vapnik VN (1999) The nature of statistical learning theory. Springer, New York

    MATH  Google Scholar 

  • Widodo A, Han T, Yang BS (2007) Combination of independent component analysis and multi-class support vector machines for fault diagnosis of induction motors. Expert Syst Appl 32(2):299–312

    Article  Google Scholar 

  • Yang BS, Park CH, Kim HJ (2000a) An efficient method of vibration diagnostics for rotating machinery using a decision tree. Int J Rotating Mach 6(1):19–27

    Article  Google Scholar 

  • Yang BS, Lim DS, Seo SY, Kim MH (2000) Defect diagnostics of rotating machinery using SOFM and LVQ. In: Proceedings of 7th international congress on sound and vibration, pp 567–574

    Google Scholar 

  • Yang BS, Kim K, Rao Raj BKN (2002) Condition classification of reciprocating compressors using RBF neural network. Int J COMADEM 5(4):12–20

    Google Scholar 

  • Yang BS, Han T, An JL (2004a) ART-Kohonen neural network for fault diagnosis of rotating machinery. Mech Syst Signal Process 18(3):645–657

    Article  Google Scholar 

  • Yang BS, Jeong SK, Oh YM, Tan ACC (2004b) Case-based reasoning with Petri nets for induction motors fault diagnosis. Expert Syst Appl 27(2):301–311

    Article  Google Scholar 

  • Yang BS, Han T, Yin ZJ (2006) Fault diagnosis system of induction motors using feature extraction, feature selection and classification algorithm. JSME Int J (C) 49(3):734–741

    Article  Google Scholar 

  • Ye Z, Sadeghian A, Wu B (2006) Mechanical fault diagnosis for induction motor with variable speed drives using adaptive neuro-fuzzy inference system. Electr Power Syst Res 76(9–10):742–752

    Article  Google Scholar 

  • Zhang QH, Benveniste A (1992) Wavelet networks. IEEE Trans Neural Netw 3:889–898

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Singapore and Science Press, Beijing, China

About this chapter

Cite this chapter

Niu, G. (2017). Intelligent Fault Diagnosis Methodology. In: Data-Driven Technology for Engineering Systems Health Management. Springer, Singapore. https://doi.org/10.1007/978-981-10-2032-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2032-2_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2031-5

  • Online ISBN: 978-981-10-2032-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics