Skip to main content

Abstract

Feature extraction is a commonly used technique applied before diagnosis and prognosis when a number of measures, or features, have been taken from a set of objects in a typical statistical pattern recognition or trending reasoning task. The goal is to define a mapping from the original representation space into a new space where the classes are more easily separable. This will reduce the classifier or prediction complexity, increasing in most cases accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Antonini G, Popovici V, Thiran JP (2006) Independent component analysis and support vector machine for face feature extraction. Signal Processing Institute, Swiss Federal Institute of Technology Lausanne. http://ltsww.epfl.ch

  • Bach FR, Jordan MI (2002) Kernel independent component analysis. J Mach Learn Res 3:1–48

    MathSciNet  MATH  Google Scholar 

  • Back AD, Weigend AS (1998) A first application of independent components analysis to extracting structure from stock returns. Int J Neural Syst 8(4):473–484

    Article  Google Scholar 

  • Baudat G, Anouar F (2000) Generalized discriminant analysis using a kernel approach. Neural Comput 12:2385–2404

    Article  Google Scholar 

  • Bishop CM (1995) Neural network for pattern recognition. Clarenderon Press, Oxford

    Google Scholar 

  • Biswall BB, Ulmer JL (1999) Blind source separation of multiple signal sources of MRI data sets using independent components analysis. J Comput Assist Tomogr 23(2):265–271

    Article  Google Scholar 

  • Cardoso JF (1998) Blind signal separation: statistical principles. Proc IEEE 86(10):2009–2020

    Article  Google Scholar 

  • Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–297

    MATH  Google Scholar 

  • Duda RO, Hart PE, Stork DG (2001) Pattern classification. Wiley-Interscience, New York

    MATH  Google Scholar 

  • Han T, Son JD, Yang BS (2005) Fault diagnosis system of induction motors using feature extraction, feature selection and classification algorithm. In: Proceedings of VS Tech2005

    Google Scholar 

  • Harmeling S, Ziehe A, Kawanabe M, Blankertz B, Muller K (2001) Nonlinear blind source separation using kernel feature spaces. In: Proceedings of international workshop on independent component analysis and blind signal separation, pp 102–107

    Google Scholar 

  • Hyvärinen A (1999) Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans Neural Networks 10:626–634

    Article  Google Scholar 

  • Hyvärinen A, Oja E (2000) Independent component analysis: algorithms and applications. Neural Networks 13(4–5):411–430

    Article  Google Scholar 

  • Jolliffe IJ (1986) Principal component analysis. Springer, New York

    Book  MATH  Google Scholar 

  • Kohonen T (1990) The self-organizing map. Proc IEEE 1464–1480

    Google Scholar 

  • Kolmogorov A, Tikhomirov V (1961) ε-entropy and ε-capacity of sets in function spaces. Trans Am Math Soc 17:277–364

    Google Scholar 

  • Liu H, Motoda H (eds) (1998) Feature extraction, construction and selection: a data mining perspective. Kluwer Academic Publishers, London

    MATH  Google Scholar 

  • Mao J, Jain A (1995) Artificial neural networks for feature extraction and multivariate data projection. IEEE Trans Neural Networks 6(2):296–317

    Article  Google Scholar 

  • Perez-Jimenez AJ, Perez-Cortes JC (2006) Genetic algorithm for linear feature extraction. Pattern Recogn Lett 27:1508–1514

    Article  Google Scholar 

  • Raudys SJ, Jain AK (1991) Small sample size effects in statistical pattern recognition: recommendations for practitioners. IEEE Trans Pattern Anal Mach Intell 13(3):252–264

    Article  Google Scholar 

  • Rosipal R, Trejo LJ (2000) Kernel partial least squares regression in reproducing kernel Hilbert space. J Mach Learn Res 2:97–123

    MATH  Google Scholar 

  • Sammon J (1969) A non-linear mapping for data structure analysis. IEEE Trans Comput 18(5):401–409

    Article  Google Scholar 

  • Schölkopf B, Smola A, Müller KR (1998) Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput 10:1299–1319

    Article  Google Scholar 

  • Sohn H, Czarnecki JA, Farrar CR (2000) Structural health monitoring using statistical process control. J Struct Eng 126(1):1356–1363

    Article  Google Scholar 

  • Sung CK, Tai HM, Chen CW (2000) Locating defects of a gear system by the technique of wavelet transform. Mech Mach Theory 35:1169–1182

    Article  MATH  Google Scholar 

  • Trunk GV (1979) A problem of dimensionality: A simple example. IEEE Trans Pattern Anal Mach Intell 1(3):306–307

    Article  MathSciNet  Google Scholar 

  • Vigario R (1997) Extraction of ocular artifacts from EEG using independent components analysis. Electroencephalogr Clin Neurophysiol 103(3):395–404

    Article  Google Scholar 

  • Yang BS, Han T, An JL (2004) ART-KOHONEN neural network for fault diagnosis of rotating machinery. Mech Syst Signal Process 18:645–657

    Article  Google Scholar 

  • Yang BS, Han T, Hwang WW (2005) Fault diagnosis of rotating machinery based on multi-class support vector machines. J Mech Sci Technol 19(3):846–859

    Article  Google Scholar 

  • Ypma A, Duin R (1998) Support objects for domain approximation, ICANN’98. Skovde, Sweden

    Google Scholar 

  • Ypma A, Pajunen AP (1999) Rotating machine vibration analysis with second order independent components analysis. In: Proceeding of the workshop on ICA and signal separation, pp 37–42

    Google Scholar 

  • Worden K, Manson G (1999) Visualization and dimension reduction of high-dimensional data for damage detection. IMAC 17:1576–1585

    Google Scholar 

  • Zang C, Friswell MI, Imregun M (2004) Structural damage detection using independent components analysis. Struct Health Monit 3(1):69–83

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Singapore and Science Press, Beijing, China

About this chapter

Cite this chapter

Niu, G. (2017). Statistic Feature Extraction. In: Data-Driven Technology for Engineering Systems Health Management. Springer, Singapore. https://doi.org/10.1007/978-981-10-2032-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2032-2_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2031-5

  • Online ISBN: 978-981-10-2032-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics