Skip to main content

Regional Distribution of Renewable Energy and the Abundance of Fossil Fuels

  • Conference paper
  • First Online:
  • 2315 Accesses

Abstract

This paper discusses the extent to which technologies developed for the exploitation of renewable energy sources (RES) can be expected to substitute for fossil fuels, toward the goal of reducing usage of fossil fuels. We compare the changes in fuel mix for primary energy consumption and for electricity generation over the past decade between regions with large and small domestic fossil fuel resources. We conclude that for newly industrialized countries rich in domestic fossil fuels, there is only a moderate or no increase in primary energy from RES, coupled with significant increases in primary energy consumption from fossil fuels although recent but preliminary data show these trends to weaken. We use the notion of a “fossil fuel curse,” which implies that it is not obvious that countries with large domestic fossil fuel resources will allow these assets to remain unexploited. This obviously imposes a tremendous threat to climate change mitigation leaving only two choices for fossil-rich economies: leave the fossil fuels in the ground and apply carbon capture technologies, both options calling for a sufficiently high cost to emit CO2 or other policy intervention in order to take place.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    See Table 6.3, page 431, in IPCC (2014), Fifth assessment report, working group III, 2014 where combinations of CO2 reductions and probabilities of exceeding 2 °C are given.

References

  1. IPCC (2014) Fifth assessment report, working group III

    Google Scholar 

  2. Victor D (2009) The politics of fossil-fuel subsidies, international institute for sustainable development, http://ssrn.com/abstract=1520984

  3. IEA World Energy Outlook (2014)

    Google Scholar 

  4. GWEC, Global Wind Energy Council (2015) Global Wind Statistics

    Google Scholar 

  5. EPIA, European Photovoltaic Industry Association (2014) Global market outlook for photovoltaics 2014–2018

    Google Scholar 

  6. EWEA, Wind in power (2015) European Statistics, European Wind Energy Association, www.ewea.org/statistics/. Accessed May 2015

  7. Iea PVPS (2014) Snapshot of global PV markets, IEA photovoltaics power systems programme. Rep IEA PVPS T 1–26:2015

    Google Scholar 

  8. Sachs JD, Warner AM (2001) Natural resource and economic development—the curse of natural resources. Eur Econ Rev 45:827–838

    Article  Google Scholar 

  9. van der Ploeg F (2011) Natural resources: curse or blessing. J Econ Lit 49:366–420

    Article  Google Scholar 

  10. Pfeiffer B, Mulder P (2013) Explaining the diffusion of renewable energy technology in developing countries. Energy Econ 40:285–296

    Article  Google Scholar 

  11. Friedrichs J, Inderwildi OR (2013) The carbon curse: are fuel rich countries doomed to high CO2 intensities? Energy Policy 62:1356–1365

    Article  Google Scholar 

  12. Davis SJ, Socolow RH (2014) Commitment accounting of CO2 emissions. Environ Res Lett 9. doi:10.1088/1748-9326/9/8/084018

    Google Scholar 

  13. IEA World Energy Outlook (2008)

    Google Scholar 

  14. Johnsson F (2011) Perspectives on CO2 capture and storage. Greenhouse Gases: Sci Technol 1(2):119–133

    Article  Google Scholar 

  15. Johnsson F, Kjärstad J, Odenberger M (2012) The importance of CO2 capture and storage—a geopolitical discussion. Therm Sci 16:655–668

    Google Scholar 

  16. Yu KMK, Curcic I, Gabriel J, Tsang SCE (2008) Recent advances in CO2 capture and utilization. ChemSusChem 1:893–899. doi:10.1002/cssc.200800169

    Article  Google Scholar 

  17. Styring P, Jansen D, de Coninck H, Reith H, Armstrong K (2011) Carbon capture and utilisation in the green economy, Report no. 501, The centre for low carbon futures 2011, ISBN:978-0-9572588-1-5

    Google Scholar 

  18. Oldenburg CM (2012) Why we need the ‘and’ in ‘CO2 utilization and storage’. Greenhouse Gas Sci Technol 2:1–2. doi:10.1002/ghg

    Article  Google Scholar 

  19. IEA World Energy Outlook (2006)

    Google Scholar 

  20. IEA World Energy Outlook (2011)

    Google Scholar 

  21. IEA World Energy Outlook (2012)

    Google Scholar 

  22. IEA World Energy Outlook (2013)

    Google Scholar 

  23. OECD Steam Coal Import price (2011)

    Google Scholar 

  24. BGR Energiestudie 2012 - Reserven, Ressourcen und Verfügbarkeit von Energierohstoffen

    Google Scholar 

  25. BMWi (2015) Bundesministerium für Wirtschaft und Energie, Zahlen und Fakten Energiedaten

    Google Scholar 

  26. Kjärstad J, Johnsson F (2012) Fossil fuels: climate change and security of supply. Int J Sustain Water Environ Syst 4:79–87

    Google Scholar 

  27. The World Bank http://data.worldbank.org/indicator/NY.GDP.TOTL.RT.ZS. Accessed Sept 2013

  28. EIA, U.S Energy Information Administration http://www.eia.gov/. Accessed 2015

  29. IEA (2011) Country Review Norway

    Google Scholar 

  30. IEA (2007) Country Review Germany

    Google Scholar 

  31. IEA (2013) Country Review Germany

    Google Scholar 

  32. BMU (2013) www.bmu.de. Accessed 2012

  33. Eurostat (2010) Energy yearly statistics 2008, Eurostat statistical books, ISSN:1830-7833

    Google Scholar 

  34. Friedlingstein P, Andrew RM, Rogelj J, Peters GP, Canadell JG, Knutti R, Luderer G, Raupach MR, Schaeffer M, van Vuuren DP, Le Quéré C (2014) Persistent growth of CO2 emissions and implications for reaching climate targets. Nat Geosci. doi:10.1038/NGEO2248

    Google Scholar 

  35. Raupach MR, Davis SJ, Peters GP, Andrew RM, Canadell JG, Ciais P, Friedlingstein P, Jotzo F, van Vuuren DP, Quéré CL (2014) Sharing a quota on cumulative carbon emissions. Nat Clim Change. doi:10.1038/NCLIMATE2384

    Google Scholar 

Download references

Acknowledgments

This work is co-funded by the projects: Pathways to Sustainable European Energy Systems and the North European Power Perspectives.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filip Johnsson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore and Tsinghua University Press

About this paper

Cite this paper

Johnsson, F., Kjärstad, J. (2016). Regional Distribution of Renewable Energy and the Abundance of Fossil Fuels. In: Yue, G., Li, S. (eds) Clean Coal Technology and Sustainable Development. ISCC 2015. Springer, Singapore. https://doi.org/10.1007/978-981-10-2023-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2023-0_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2022-3

  • Online ISBN: 978-981-10-2023-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics