Skip to main content

Targeting the Lung Cancer Microenvironment: Harnessing Host Responses

  • Chapter
  • First Online:
Book cover Molecular Targeted Therapy of Lung Cancer

Abstract

Understanding the host response to lung cancer is critical in the development of long-term therapeutic responses and cures for advanced-stage disease. While state-of-the-art treatments that target the tumor cell directly are effective as initial antitumor approaches, strategies that augment antitumor host responses are highly appealing, and may overcome resistance through novel discoveries. These involve (1) discovery of basic mechanisms by which the tumor “hijacks” host immune regulation and vascular homeostasis (thus promoting tumor growth), and (2) discovery of tumor-resistance pathways that counter immune- and/or vascular-targeting therapies. Major mechanisms by which lung carcinoma is able to usurp host mechanisms include both the tumor’s manipulation of immune checkpoint regulatory pathways (with a cytokine and dendritic cell balance that maintains a high suppressor/effector T-cell ratio) and the remodeling of blood and lymphatic vasculature by multiple endothelial mitogens, thereby promoting tumor growth and dissemination. Lymphatic dissemination in particular involves not only tumor cells but also immunosuppressive dendritic cell trafficking to tumor-draining lymph nodes. Novel approaches to overcome these challenges include immune checkpoint-blocking strategies (e.g., PD-1/PD-L1 or CTLA4 blockade which inhibit T-effector suppression) or agonists to T-stimulatory pathways, such as OX40 or 4-1BB. They also include vaccine development and/or approaches to manipulate dendritic cells or engineer T cells (e.g., CAR-T cells) against antigens that are (preferably) clonally expressed by the entire tumor. Major limitations to these approaches include poor tumor-antigen recognition or presentation by dendritic cells or hyporesponsive T cells in the immunosuppressive tumor microenvironment. Moreover, autoimmune-type side effects of immune checkpoint T-cell targeting or T-cell engineering present therapeutic challenges. Finally, the discovery of tumor neo-antigens, which are known to be more abundantly expressed in tumors initiated by environmental stimuli (e.g., melanoma or squamous lung carcinoma), as well as their ability to predict T cell responsiveness, is another important development in the quest to augment host immune responses to lung cancer. These discoveries will be valuable in promoting a set of strategies that markedly improve the chances for durable remissions or cures in the setting of advanced-stage lung cancer or even recurrent disease following definitive treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Siegel RL, Miller KD, Jemal A (2016) Cancer statistics, 2016. CA Cancer J Clin 66(1):7–30

    Article  PubMed  Google Scholar 

  2. Detterbeck FC, Postmus PE, Tanoue LT (2013) The stage classification of lung cancer: diagnosis and management of lung cancer, 3rd ed: American College of chest physicians evidence-based clinical practice guidelines. Chest 143(5 Suppl):e191S–e210S

    Article  PubMed  Google Scholar 

  3. National Lung Screening Trial Research Team, Aberle DR, Adams AM, Berg CD, Black WC, Clapp JD et al (2011) Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med 365(5):395–409

    Article  Google Scholar 

  4. Gajewski TF, Schreiber H, Fu YX (2013) Innate and adaptive immune cells in the tumor microenvironment. Nat Immunol 14(10):1014–1022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hall RD, Le TM, Haggstrom DE, Gentzler RD (2015) Angiogenesis inhibition as a therapeutic strategy in non-small cell lung cancer (NSCLC). Transl Lung Cancer Res 4(5):515–523

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Yuan A, Hsiao YJ, Chen HY, Chen HW, Ho CC, Chen YY et al (2015) Opposite effects of M1 and M2 macrophage subtypes on lung cancer progression. Sci Rep 5:14273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Das M, Wakelee H (2014) Angiogenesis and lung cancer: ramucirumab prolongs survival in 2(nd)-line metastatic NSCLC. Transl Lung Cancer Res 3(6):397–399

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Reck M, Mellemgaard A (2015) Emerging treatments and combinations in the management of NSCLC: clinical potential of nintedanib. Biologics 9:47–56

    PubMed  PubMed Central  Google Scholar 

  9. Chu BF, GA O (2016) Incorporation of antiangiogenic therapy into the non-small-cell lung cancer paradigm. Clin Lung Cancer 17:493–506

    Article  CAS  PubMed  Google Scholar 

  10. Chang YW, Su CM, Su YH, Ho YS, Lai HH, Chen HA et al (2014) Novel peptides suppress VEGFR-3 activity and antagonize VEGFR-3-mediated oncogenic effects. Oncotarget 5(11):3823–3835

    Article  PubMed  PubMed Central  Google Scholar 

  11. Couraud S, Zalcman G, Milleron B, Morin F, Souquet PJ (2012) Lung cancer in never smokers–a review. Eur J Cancer 48(9):1299–1311

    Article  CAS  PubMed  Google Scholar 

  12. Skrzypski M, Czapiewski P, Goryca K, Jassem E, Wyrwicz L, Pawlowski R et al (2014) Prognostic value of microRNA expression in operable non-small cell lung cancer patients. Br J Cancer 110(4):991–1000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mok TS, Wu YL, Thongprasert S, Yang CH, Chu DT, Saijo N et al (2009) Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med 361(10):947–957

    Article  CAS  PubMed  Google Scholar 

  14. Sellmann L, Fenchel K, Dempke WC (2015) Improved overall survival following tyrosine kinase inhibitor treatment in advanced or metastatic non-small-cell lung cancer-the Holy Grail in cancer treatment? Transl Lung Cancer Res 4(3):223–227

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Chen DS, Mellman I (2013) Oncology meets immunology: the cancer-immunity cycle. Immunity 39(1):1–10

    Article  PubMed  Google Scholar 

  16. Melero I, Gaudernack G, Gerritsen W, Huber C, Parmiani G, Scholl S et al (2014) Therapeutic vaccines for cancer: an overview of clinical trials. Nat Rev Clin Oncol 11(9):509–524

    Article  CAS  PubMed  Google Scholar 

  17. Zamarron BF, Chen W (2011) Dual roles of immune cells and their factors in cancer development and progression. Int J Biol Sci 7(5):651–658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Thomas A, Giaccone G (2015) Why has active immunotherapy not worked in lung cancer? Ann Oncol 26(11):2213–2220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Schneider T, Hoffmann H, Dienemann H, Schnabel PA, Enk AH, Ring S et al (2011) Non-small cell lung cancer induces an immunosuppressive phenotype of dendritic cells in tumor microenvironment by upregulating B7-H3. J Thorac Oncol 6(7):1162–1168

    Article  PubMed  Google Scholar 

  20. Finn OJ (2008) Cancer immunology. N Engl J Med 358(25):2704–2715

    Article  CAS  PubMed  Google Scholar 

  21. Noy R, Pollard JW (2014) Tumor-associated macrophages: from mechanisms to therapy. Immunity 41(1):49–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mittal D, Gubin MM, Schreiber RD, Smyth MJ (2014) New insights into cancer immunoediting and its three component phases–elimination, equilibrium and escape. Curr Opin Immunol 27:16–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Anagnostou VK, Brahmer JR (2015) Cancer immunotherapy: a future paradigm shift in the treatment of non-small cell lung cancer. Clin Cancer Res 21(5):976–984

    Article  CAS  PubMed  Google Scholar 

  24. Garon EB, Rizvi NA, Hui R, Leighl N, Balmanoukian AS, Eder JP et al (2015) Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med 372(21):2018–2028

    Article  PubMed  Google Scholar 

  25. Brahmer J, Reckamp KL, Baas P, Crino L, Eberhardt WE, Poddubskaya E et al (2015) Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med 373(2):123–135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Herbst RS, Baas P, Kim DW, Felip E, Perez-Gracia JL, Han JY et al (2016) Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. Lancet 387(10027):1540–1550

    Article  CAS  PubMed  Google Scholar 

  27. Fehrenbacher L, Spira A, Ballinger M, Kowanetz M, Vansteenkiste J, Mazieres J et al (2016) Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR): a multicentre, open-label, phase 2 randomised controlled trial. Lancet 387(10030):1837–1846

    Article  CAS  PubMed  Google Scholar 

  28. Rizvi NA, Mazieres J, Planchard D, Stinchcombe TE, Dy GK, Antonia SJ et al (2015) Activity and safety of nivolumab, an anti-PD-1 immune checkpoint inhibitor, for patients with advanced, refractory squamous non-small-cell lung cancer (CheckMate 063): a phase 2, single-arm trial. Lancet Oncol 16(3):257–265

    Article  CAS  PubMed  Google Scholar 

  29. Topalian SL, Drake CG, Pardoll DM (2015) Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell 27(4):450–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Leone RD, Lo YC, Powell JD (2015) A2aR antagonists: next generation checkpoint blockade for cancer immunotherapy. Comput Struct Biotechnol J 13:265–272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Farkona S, Diamandis EP, Blasutig IM (2016) Cancer immunotherapy: the beginning of the end of cancer? BMC Med 14:73

    Article  PubMed  PubMed Central  Google Scholar 

  32. Sharma P, Allison JP (2015) Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential. Cell 161(2):205–214

    Article  CAS  PubMed  Google Scholar 

  33. Rooney C, Sethi T (2015) Advances in molecular biology of lung disease: aiming for precision therapy in non-small cell lung cancer. Chest 148(4):1063–1072

    Article  PubMed  Google Scholar 

  34. Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF et al (2012) Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 366(26):2443–2454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ et al (2015) Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348(6230):124–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, Biankin AV et al (2013) Signatures of mutational processes in human cancer. Nature 500(7463):415–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Snyder A, Makarov V, Merghoub T, Yuan J, Zaretsky JM, Desrichard A et al (2014) Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med 371(23):2189–2199

    Article  PubMed  PubMed Central  Google Scholar 

  38. McGranahan N, Furness AJ, Rosenthal R, Ramskov S, Lyngaa R, Saini SK et al (2016) Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science 351(6280):1463–1469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Butts C, Socinski MA, Mitchell PL, Thatcher N, Havel L, Krzakowski M et al (2014) Tecemotide (L-BLP25) versus placebo after chemoradiotherapy for stage III non-small-cell lung cancer (START): a randomised, double-blind, phase 3 trial. Lancet Oncol 15(1):59–68

    Article  CAS  PubMed  Google Scholar 

  40. Gubin MM, Artyomov MN, Mardis ER, Schreiber RD (2015) Tumor neoantigens: building a framework for personalized cancer immunotherapy. J Clin Invest 125(9):3413–3421

    Article  PubMed  PubMed Central  Google Scholar 

  41. Arriola E, Ottensmeier C (2016) TG4010: a vaccine with a therapeutic role in cancer. Immunotherapy 8(5):511–519

    Article  CAS  PubMed  Google Scholar 

  42. Alfonso S, Valdes-Zayas A, Santiesteban ER, Flores YI, Areces F, Hernandez M et al (2014) A randomized, multicenter, placebo-controlled clinical trial of racotumomab-alum vaccine as switch maintenance therapy in advanced non-small cell lung cancer patients. Clin Cancer Res 20(14):3660–3671

    Article  CAS  PubMed  Google Scholar 

  43. Deloch L, Derer A, Hartmann J, Frey B, Fietkau R, Gaipl US (2016) Modern radiotherapy concepts and the impact of radiation on immune activation. Front Oncol 6:141

    Article  PubMed  PubMed Central  Google Scholar 

  44. Giaccone G, Bazhenova LA, Nemunaitis J, Tan M, Juhasz E, Ramlau R et al (2015) A phase III study of belagenpumatucel-L, an allogeneic tumour cell vaccine, as maintenance therapy for non-small cell lung cancer. Eur J Cancer 51(16):2321–2329

    Article  CAS  PubMed  Google Scholar 

  45. Deng L, Liang H, Burnette B, Beckett M, Darga T, Weichselbaum RR et al (2014) Irradiation and anti-PD-L1 treatment synergistically promote antitumor immunity in mice. J Clin Invest 124(2):687–695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sharabi AB, Nirschl CJ, Kochel CM, Nirschl TR, Francica BJ, Velarde E et al (2015) Stereotactic radiation therapy augments antigen-specific PD-1-mediated antitumor immune responses via cross-presentation of tumor antigen. Cancer Immunol Res 3(4):345–355

    Article  CAS  PubMed  Google Scholar 

  47. Hinrichs CS, Rosenberg SA (2014) Exploiting the curative potential of adoptive T-cell therapy for cancer. Immunol Rev 257(1):56–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yee C (2013) Adoptive T-cell therapy for cancer: boutique therapy or treatment modality? Clin Cancer Res 19(17):4550–4552

    Article  CAS  PubMed  Google Scholar 

  49. Morgan RA, Dudley ME, Rosenberg SA (2010) Adoptive cell therapy: genetic modification to redirect effector cell specificity. Cancer J 16(4):336–341

    Article  CAS  PubMed  Google Scholar 

  50. Gross G, Waks T, Eshhar Z (1989) Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proc Natl Acad Sci U S A 86(24):10024–10028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lee DW, Kochenderfer JN, Stetler-Stevenson M, Cui YK, Delbrook C, Feldman SA et al (2015) T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet 385(9967):517–528

    Article  CAS  PubMed  Google Scholar 

  52. Michot JM, Bigenwald C, Champiat S, Collins M, Carbonnel F, Postel-Vinay S et al (2016) Immune-related adverse events with immune checkpoint blockade: a comprehensive review. Eur J Cancer 54:139–148

    Article  CAS  PubMed  Google Scholar 

  53. Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF et al (2010) Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med 363(5):411–422

    Article  CAS  PubMed  Google Scholar 

  54. Lesterhuis WJ, Haanen JB, Punt CJ (2011) Cancer immunotherapy–revisited. Nat Rev Drug Discov 10(8):591–600

    Article  CAS  PubMed  Google Scholar 

  55. El Ghazal R, Yin X, Johns SC, Swanson L, Macal M, Ghosh P et al (2016) Glycan sulfation modulates dendritic cell biology and tumor growth. Neoplasia 18(5):294–306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Tammela T, Alitalo K (2010) Lymphangiogenesis: molecular mechanisms and future promise. Cell 140(4):460–476

    Article  CAS  PubMed  Google Scholar 

  57. Felts RL, Narayan K, Estes JD, Shi D, Trubey CM, Fu J et al (2010) 3D visualization of HIV transfer at the virological synapse between dendritic cells and T cells. Proc Natl Acad Sci U S A 107(30):13336–13341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark M. Fuster M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Fuster, M.M. (2017). Targeting the Lung Cancer Microenvironment: Harnessing Host Responses. In: Takiguchi, Y. (eds) Molecular Targeted Therapy of Lung Cancer. Springer, Singapore. https://doi.org/10.1007/978-981-10-2002-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2002-5_20

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2000-1

  • Online ISBN: 978-981-10-2002-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics