Skip to main content

Classification of Adenocarcinoma of the Lung, with a Special Reference to Prognosis

  • Chapter
  • First Online:
Book cover Molecular Targeted Therapy of Lung Cancer
  • 1373 Accesses

Abstract

Classification of lung adenocarcinoma was largely revised in the 4th edition of WHO classification of tumors of the lung, pleura, thymus, and heart published in 2015. This chapter deals with the major changes in the adenocarcinoma classification, briefly describing the definition, gross and histopathological findings, genetic profiles and clinical features of each subtype, and variants of lung adenocarcinoma. Special reference was also made to the prognostic aspects. The new concepts of adenocarcinoma in situ and minimally invasive adenocarcinoma are especially important from the prognostic point of view because of their virtual connotation as 100% curable cancers if resected completely. Each subtype of invasive adenocarcinoma may be categorized into either good, intermediate, or poor prognostic group. Much progress has been made regarding the genetic profiles as well, such as the occurrence of EGFR and KRAS mutations, ALK fusion genes and recently discovered alterations, and NRG1 fusion genes in association with adenocarcinomas with certain characteristics. A brief overview of the major changes in the lung adenocarcinoma classification in this chapter will help physicians, radiologists, and pathologists grasp the significance and meaning of the histopathological diagnosis according to the new WHO classification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Travis WD, Brambilla E, Burke AP et al (2015) WHO classification of tumours of the lung, pleura, thymus and heart, 4th edn. International Agency for Research on Cancer Press, Lyon

    Google Scholar 

  2. Travis WD, Brambilla E, Nicholson AG (2015) The 2015 World health organization classification of lung tumors: impact of genetic, clinical and radiologic advances since the 2004 classification. J Thorac Oncol 10:1243–1260. doi:10.1097/JTO.0000000000000630

    Article  PubMed  Google Scholar 

  3. Travis WD, Brambilla E, Noguchi M et al (2011) The new IASLC/ATS/ERS international multidisciplinary lung adenocarcinoma classification. J Thorac Oncol 6:244–285

    Article  PubMed  PubMed Central  Google Scholar 

  4. Travis WD, Brambilla E, Noguchi M et al (2013) Diagnosis of lung cancer in small biopsies and cytology: implications of the 2011 International Association for the Study of Lung Cancer/American Thoracic Society/ European Respiratory Society classification. Arch Pathol Lab Med 137:668–684

    Article  PubMed  Google Scholar 

  5. Nakayama H, Noguchi M, Tsuchiya R et al (1990) Clonal growth of atypical adenomatous hyperplasia of the lung: cytofluorometric analysis of nuclear DNA content. Mod Pathol 3:314–320

    CAS  PubMed  Google Scholar 

  6. Kitamura H, Kameda Y, Ito T et al (1990) Atypical adenomatous hyperplasia of the lung. Implications for the pathogenesis of peripheral lung adenocarcinoma. Am J Clin Pathol 111:610–622

    Article  Google Scholar 

  7. Takamochi K, Ogura T, Suzuki K et al (2001) Loss of heterozygosity on chromosomes 9q and 16p in atypical adenomatous hyperplasia concomitant with adenocarcinoma of the lung. Am J Pathol 159:1941–1948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sakamoto H, Shimizu J, Horio Y et al (2007) Disproportionate representation of KRAS gene mutation in atypical adenomatous hyperplasia, but even distribution of EGFR gene mutation from preinvasive to invasive adenocarcinomas. J Pathol 212:287–294

    Article  CAS  PubMed  Google Scholar 

  9. Soh J, Toyooka S, Ichihara S et al (2008) Sequential molecular changes during multistage pathogenesis of small peripheral adenocarcinomas of the lung. J Thorac Oncol 3:340–347. doi:10.1097/JTO.0b013e318168d20a

    Article  PubMed  PubMed Central  Google Scholar 

  10. Yoo SB, Chung JH, Lee HJ, Lee CT et al (2010) Epidermal growth factor receptor mutation and p53 overexpression during the multistage progression of small adenocarcinoma of the lung. J Thorac Oncol 5:964–969. doi:10.1097/JTO.0b013e3181dd15c0

    Article  PubMed  Google Scholar 

  11. Yoshida Y, Shibata T, Kokubu A et al (2005) Mutations of the epidermal growth factor receptor gene in atypical adenomatous hyperplasia and bronchioloalveolar carcinoma of the lung. Lung Cancer 50:1–8

    Article  PubMed  Google Scholar 

  12. Kobayashi Y, Mitsudomi T, Sakao Y et al (2015) Genetic features of pulmonary adenocarcinoma presenting with ground-glass nodules: the differences between nodules with and without growth. Ann Oncol 26:156–161. doi:10.1093/annonc/mdu505

    Article  CAS  PubMed  Google Scholar 

  13. Izumchenko E, Chang X, Brait M et al (2015) Targeted sequencing reveals clonal genetic changes in the progression of early lung neoplasms and paired circulating DNA. Nat Commun 16:8258. doi:10.1038/ncomms9258

    Article  Google Scholar 

  14. Kakinuma R, Muramatsu Y, Kusumoto M et al (2015) Solitary pure ground-glass nodules 5 mm or smaller: frequency of growth. Radiology 276:873–882. doi:10.1148/radiol.2015141071

    Article  PubMed  Google Scholar 

  15. Travis WD, Asamura H, Bankier AA et al (2016) The IASLC Lung Cancer Staging Project: proposals for coding T categories for subsolid nodules and assessment of tumor size in part-solid tumors in the forthcoming eighth edition of the TNM classification of lung cancer. J Thorac Oncol 11:1204–1223. doi:10.1016/j.jtho.2016.03.025

    Article  PubMed  Google Scholar 

  16. Miyata N, Endo M, Nakajima T et al (2015) High-resolution computed tomography findings of early mucinous adenocarcinomas and their pathologic characteristics in 22 surgically resected cases. Eur J Radiol 84:993–997. doi:10.1016/j.ejrad.2015.01.014

    Article  PubMed  Google Scholar 

  17. Noguchi M, Morikawa A, Kawasaki M et al (1995) Small adenocarcinoma of the lung. Histological characteristics and prognosis. Cancer 75:2844–2852

    Article  CAS  PubMed  Google Scholar 

  18. Tsuta K, Ishii G, Nitadori J et al (2006) Comparison of the immunophenotypes of signet-ring cell carcinoma, solid adenocarcinoma with mucin production, and mucinous bronchioloalveolar carcinoma of the lung characterized by the presence of cytoplasmic mucin. J Pathol 209:78–87

    Article  CAS  PubMed  Google Scholar 

  19. Sato S, Motoi N, Hiramatsu M et al (2015) Pulmonary adenocarcinoma in situ: analyses of a large series with reference to smoking, driver mutations, and receptor tyrosine kinase pathway activation. Am J Surg Pathol 39:912–921. doi:10.1097/PAS.0000000000000458

    Article  PubMed  Google Scholar 

  20. Yoshizawa A, Sumiyoshi S, Sonobe M et al (2013) Validation of the IASLC/ATS/ERS lung adenocarcinoma classification for prognosis and association with EGFR and KRAS gene mutations: analysis of 440 Japanese patients. J Thorac Oncol 8:52–61

    Article  CAS  PubMed  Google Scholar 

  21. Tsuta K, Kawago M, Inoue E et al (2013) The utility of the proposed IASLC/ATS/ERS lung adenocarcinoma subtypes for disease prognosis and correlation of driver gene alterations. Lung Cancer 81:371–376

    Article  PubMed  Google Scholar 

  22. Nakagiri T, Sawabata N, Morii E et al (2014) Evaluation of the new IASLC/ATS/ERS proposed classification of adenocarcinoma based on lepidic pattern in patients with pathological stage IA pulmonary adenocarcinoma. Gen Thorac Cardiovasc Surg 62:671–677. doi:10.1007/s11748-014-0429-3

    Article  PubMed  Google Scholar 

  23. Yanagawa N, Shiono S, Abiko M et al (2014) The correlation of the International Association for the Study of Lung Cancer (IASLC)/American Thoracic Society (ATS)/European Respiratory Society (ERS) classification with prognosis and EGFR mutation in lung adenocarcinoma. Ann Thorac Surg 98:453–458. doi:10.1016/j.athoracsur.2014.04.108

    Article  PubMed  Google Scholar 

  24. Kadota K, Villena-Vargas J, Yoshizawa A et al (2014) Prognostic significance of adenocarcinoma in situ, minimally invasive adenocarcinoma, and nonmucinous lepidic predominant invasive adenocarcinoma of the lung in patients with stage I disease. Am J Surg Pathol 38:448–460

    Article  PubMed  PubMed Central  Google Scholar 

  25. Eto T, Suzuki H, Honda A et al (1996) The changes of the stromal elastotic framework in the growth of peripheral lung adenocarcinomas. Cancer 77:646–656

    Article  CAS  PubMed  Google Scholar 

  26. Suzuki K, Yokose T, Yoshida J et al (2000) Prognostic significance of the size of central fibrosis in peripheral adenocarcinoma of the lung. Ann Thorac Surg 69:893–897

    Article  CAS  PubMed  Google Scholar 

  27. Yokose T, Suzuki K, Nagai K et al (2000) Favorable and unfavorable morphological prognostic factors in peripheral adenocarcinoma of the lung 3 cm or less in diameter. Lung Cancer 29:179–188

    Article  CAS  PubMed  Google Scholar 

  28. Terasaki H, Niki T, Matsuno Y et al (2003) Lung adenocarcinoma with mixed bronchioloalveolar and invasive components: clinicopathological features, subclassification by extent of invasive foci, and immunohistochemical characterization. Am J Surg Pathol 27:937–951

    Article  PubMed  Google Scholar 

  29. Sakurai H, Maeshima A, Watanabe S et al (2004) Grade of stromal invasion in small adenocarcinoma of the lung: histopathological minimal invasion and prognosis. Am J Surg Pathol 28:198–206

    Article  PubMed  Google Scholar 

  30. Minami Y, Matsuno Y, Iijima T et al (2005) Prognostication of small-sized primary pulmonary adenocarcinomas by histopathological and karyometric analysis. Lung Cancer 48:339–348

    Article  PubMed  Google Scholar 

  31. Kurokawa T, Matsuno Y, Noguchi M et al (1994) Surgically curable “early” adenocarcinoma in the periphery of the lung. Am J Surg Pathol 18:431–438

    Article  CAS  PubMed  Google Scholar 

  32. Maeshima AM, Niki T, Maeshima A et al (2002) Modified scar grade: a prognostic indicator in small peripheral lung adenocarcinoma. Cancer 95:2546–2554

    Article  PubMed  Google Scholar 

  33. Yoshizawa A, Motoi N, Riely GJ et al (2011) Impact of proposed IASLC/ATS/ERS classification of lung adenocarcinoma: prognostic subgroups and implications for further revision of staging based on analysis of 514 stage I cases. Mod Pathol 24:653–664

    Article  CAS  PubMed  Google Scholar 

  34. Russell PA, Wainer Z, Wright GM et al (2011) Does lung adenocarcinoma subtype predict patient survival?: a clinicopathologic study based on the new International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society international multidisciplinary lung adenocarcinoma classification. J Thorac Oncol 6:1496–1504. doi:10.1097/JTO.0b013e318221f701

    Article  PubMed  Google Scholar 

  35. Gu J, Lu C, Guo J et al (2013) Prognostic significance of the IASLC/ATS/ERS classification in Chinese patients-a single institution retrospective study of 292 lung adenocarcinoma. J Surg Oncol 107:474–480

    Article  PubMed  Google Scholar 

  36. Hung JJ, Yeh YC, Jeng WJ et al (2014) Predictive value of the international association for the study of lung cancer/American Thoracic Society/European Respiratory Society classification of lung adenocarcinoma in tumor recurrence and patient survival. J Clin Oncol 32:2357–2364

    Article  PubMed  Google Scholar 

  37. Cha MJ, Lee HY, Lee KS et al (2014) Micropapillary and solid subtypes of invasive lung adenocarcinoma: clinical predictors of histopathology and outcome. J Thorac Cardiovasc Surg 147:921–928

    Article  PubMed  Google Scholar 

  38. Yatabe Y, Kosaka T, Takahashi T et al (2005) EGFR mutation is specific for terminal respiratory unit type adenocarcinoma. Am J Surg Pathol 29:633–639

    Article  PubMed  Google Scholar 

  39. Mäkinen JM, Laitakari K, Johnson S (2015) Nonpredominant lepidic pattern correlates with better outcome in invasive lung adenocarcinoma. Lung Cancer 90:568–574. doi:10.1016/j.lungcan.2015.10.014

    Article  PubMed  Google Scholar 

  40. Warth A, Muley T, Meister M et al (2012) The novel histologic International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society classification system of lung adenocarcinoma is a stage-independent predictor of survival. J Clin Oncol 30:1438–1446

    Article  PubMed  Google Scholar 

  41. Inamura K, Takeuchi K, Togashi Y (2009) EML4-ALK lung cancers are characterized by rare other mutations, a TTF-1 cell lineage, an acinar histology, and young onset. Mod Pathol 22:508–515. doi:10.1038/modpathol.2009.2

    Article  CAS  PubMed  Google Scholar 

  42. Yoshida A, Tsuta K, Nakamura H et al (2011) A comprehensive histologic analysis of ALK-rearranged lung carcinomas. Am J Surg Pathol 35:1226–1234. doi:10.1097/PAS.0b013e3182233e06

    Article  PubMed  Google Scholar 

  43. Kadota K, Yeh YC, Sima CS et al (2014) The cribriform pattern identifies a subset of acinar predominant tumors with poor prognosis in patients with stage I lung adenocarcinoma: a conceptual proposal to classify cribriform predominant tumors as a distinct histologic subtype. Mod Pathol 27:690–700

    Article  PubMed  Google Scholar 

  44. Warth A, Muley T, Harms A et al (2016) Clinical relevance of different papillary growth patterns of pulmonary adenocarcinoma. Am J Surg Pathol 40:818–826. doi:10.1097/PAS.0000000000000622

    Article  PubMed  Google Scholar 

  45. Kadota K, Nitadori J, Sima CS et al (2015) Tumor spread through air spaces is an important pattern of invasion and impacts the frequency and location of recurrences after limited resection for small stage I lung adenocarcinomas. J Thorac Oncol 10:806–814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lee G, Lee HY, Jeong JY et al (2015) Clinical impact on minimal micropapillary pattern in invasive lung adenocarcinoma: prognostic significance and survival outcomes. Am J Surg Pathol 39:660–666

    Article  PubMed  Google Scholar 

  47. Nitadori J, Bograd AJ, Kadota K et al (2013) Impact of micropapillary histologic subtype in selecting limited resection vs lobectomy for lung adenocarcinoma of 2cm or smaller. J Natl Cancer Inst 105:1212–1220

    Article  PubMed  PubMed Central  Google Scholar 

  48. Rekhtman N, Tafe LJ, Chaft JE et al (2013) Distinct profile of driver mutations and clinical features in immunomarker-defined subsets of pulmonary large-cell carcinoma. Mod Pathol 26:511–522. doi:10.1038/modpathol.2012.195

    Article  CAS  PubMed  Google Scholar 

  49. Rossi G, Mengoli MC, Cavazza A et al (2014) Large cell carcinoma of the lung: clinically oriented classification integrating immunohistochemistry and molecular biology. Virchows Arch 464:61–68. doi:10.1007/s00428-013-1501-6

    Article  CAS  PubMed  Google Scholar 

  50. Hwang DH, Szeto DP, Perry AS et al (2014) Pulmonary large cell carcinoma lacking squamous differentiation is clinicopathologically indistinguishable from solid-subtype adenocarcinoma. Arch Pathol Lab Med 138(5):626–635. doi:10.5858/arpa.2013-0179-OA

    Article  PubMed  Google Scholar 

  51. Rekhtman N, Ang DC, Riely GJ et al (2013) KRAS mutations are associated with solid growth pattern and tumor-infiltrating leukocytes in lung adenocarcinoma. Mod Pathol 26(10):1307–1319. doi:10.1038/modpathol.2013.74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Driver BR, Portier BP, Mody DR et al (2016) Next-generation sequencing of a cohort of pulmonary large cell carcinomas reclassified by World Health Organization 2015 Criteria. Arch Pathol Lab Med 140(4):312–317. doi:10.5858/arpa.2015-0361-OA

    Article  PubMed  Google Scholar 

  53. Solis LM, Behrens C, Raso MG et al (2012) Histologic patterns and molecular characteristics of lung adenocarcinoma associated with clinical outcome. Cancer 118:2889–2899

    Article  CAS  PubMed  Google Scholar 

  54. Ujiie H, Kadota K, Chaft JE et al (2015) Solid predominant histologic subtype in resected stage I lung adenocarcinoma is an independent predictor of early, extrathoracic, multisite recurrence and of poor postrecurrence survival. J Clin Oncol 33:2877–2884

    Article  PubMed  PubMed Central  Google Scholar 

  55. Austin JH, Garg K, Aberle D et al (2013) Radiologic implications of the 2011 classification of adenocarcinoma of the lung. Radiology 266:62–71. doi:10.1148/radiol.12120240

    Article  PubMed  Google Scholar 

  56. Wu J, Chu PG, Jiang Z et al (2013) Napsin a expression in primary mucin-producing adenocarcinomas of the lung: an immunohistochemical study. J Clin Pathol 139(2):160–166. doi:10.1309/AJCP62WJUAMSZCOM

    Article  Google Scholar 

  57. Sugano M, Nagasaka T, Sasaki E et al (2013) HNF4α as a marker for invasive mucinous adenocarcinoma of the lung. Am J Surg Pathol 37:211–218. doi:10.1097/PAS.0b013e31826be303

    Article  PubMed  Google Scholar 

  58. Geles A, Gruber-Moesenbacher U, Quehenberger F et al (2015) Pulmonary mucinous adenocarcinomas: architectural patterns in correlation with genetic changes, prognosis and survival. Virchows Arch 467(6):675–686

    Article  CAS  PubMed  Google Scholar 

  59. Kakegawa S, Shimizu K, Sugano M et al (2011) Clinicopathological features of lung adenocarcinoma with KRAS mutations. Cancer 15(117):4257–4266. doi:10.1002/cncr.26010

    Article  Google Scholar 

  60. Hata A, Katakami N, Fujita S et al (2010) Frequency of EGFR and KRAS mutations in Japanese patients with lung adenocarcinoma with features of the mucinous subtype of bronchioloalveolar carcinoma. J Thorac Oncol 5:1197–1200. doi:10.1097/JTO.0b013e3181e2a2bc

    Article  PubMed  Google Scholar 

  61. Finberg KE, Sequist LV, Joshi VA et al (2007) Mucinous differentiation correlates with absence of EGFR mutation and presence of KRAS mutation in lung adenocarcinomas with bronchioloalveolar features. J Mol Diagn 2007(9):320–326

    Article  Google Scholar 

  62. Fernandez-Cuesta L, Plenker D, Osada H et al (2014) CD74-NRG1 fusions in lung adenocarcinoma. Cancer Discov 4:415–422. doi:10.1158/2159-8290.CD-13-0633

    Article  CAS  PubMed  Google Scholar 

  63. Shim HS, Kenudson M, Zheng Z et al (2015) Unique genetic and survival characteristics of invasive mucinous adenocarcinoma of the lung. J Thorac Oncol 10:1156–1162. doi:10.1097/JTO.0000000000000579

    Article  PubMed  Google Scholar 

  64. Nakaoku T, Tsuta K, Ichikawa H et al (2014) Druggable oncogene fusions in invasive mucinous lung adenocarcinoma. Clin Cancer Res 20:3087–3093. doi:10.1158/1078-0432.CCR-14-0107

    Article  CAS  PubMed  Google Scholar 

  65. Ichinokawa H, Ishii G, Nagai K et al (2013) Distinct clinicopathologic characteristics of lung mucinous adenocarcinoma with KRAS mutation. Hum Pathol 44:2636–2642. doi:10.1016/j.humpath.2013.05.026

    Article  CAS  PubMed  Google Scholar 

  66. Kettle R, Simmons J, Schindler F et al (2010) Regulation of neuregulin 1beta1-induced MUC5AC and MUC5B expression in human airway epithelium. Am J Respir Cell Mol Biol 42:472–481. doi:10.1165/rcmb.2009-0018OC

    Article  CAS  PubMed  Google Scholar 

  67. Rossi G, Murer B, Cavazza et al (2004) Primary mucinous (so-called colloid) carcinomas of the lung: a clinicopathologic and immunohistochemical study with special reference to CDX-2 homeobox gene and MUC2 expression. Am J Surg Pathol 28(4):442–452.

    Google Scholar 

  68. Zenali MJ, Weissferdt A, Solis LM et al (2015) An update on clinicopathological, immunohistochemical, and molecular profiles of colloid carcinoma of the lung. Hum Pathol 46:836–842. doi:10.1016/j.humpath.2014.10.032

    Article  CAS  PubMed  Google Scholar 

  69. Nakatani Y, Kitamura H, Inayama Y et al (1998) Pulmonary adenocarcinomas of the fetal lung type: a clinicopathologic study indicating differences in histology, epidemiology, and natural history of low-grade and high-grade forms. Am J Surg Pathol 22:399–411

    Article  CAS  PubMed  Google Scholar 

  70. Nakatani Y, Masudo K, Miyagi Y et al (2002) Aberrant nuclear localization and gene mutation of beta-catenin in low-grade adenocarcinoma offetal lung type: up-regulation of the Wnt signaling pathway may be a common denominator for the development of tumors that form morules. Mod Pathol 15:617–624

    Article  PubMed  Google Scholar 

  71. Morita, AJSP, 2013

    Google Scholar 

  72. Suzuki M, Yazawa T, Ota S et al (2015) High-grade fetal adenocarcinoma of the lung is a tumour with a fetal phenotype that shows diverse differentiation, including high-grade neuroendocrine carcinoma: a clinicopathological, immunohistochemical mutational study of 20 cases. Histopathology 67:806–816

    Article  PubMed  Google Scholar 

  73. Sekine S, Shibata T, Matsuno Y et al (2003) Beta-catenin mutations in pulmonary blastomas: association with morule formation. J Pathol 200:214–221

    Article  CAS  PubMed  Google Scholar 

  74. Wu Y, Chen D, Li Y et al (2014) DICER1 mutations in a patient with an ovarian Sertoli-Leydig tumor, well-differentiated fetal adenocarcinoma of the lung, and familial multinodular goiter. Eur J Med Genet 57:621–625

    Article  PubMed  Google Scholar 

  75. Kock L, Bah I, Wu Y et al (2016) Germline and somatic DICER1 mutations in a well-differentiated fetal adenocarcinoma of the lung. J Thorac Oncol 11(3):e31–e33. doi:10.1016/j.jtho.2015.09.012

    Article  PubMed  Google Scholar 

  76. Inamura K, Satoh Y, Okumura S et al (2005) Pulmonary adenocarcinomas with enteric differentiation: histologic and immunohistochemical characteristics compared with metastatic colorectal cancers and usual pulmonary adenocarcinomas. Am J Surg Pathol 29(5):660–665

    Article  PubMed  Google Scholar 

  77. Yousem SA (2005) Pulmonary intestinal-type adenocarcinoma does not show enteric differentiation by immunohistochemical study. Mod Pathol 18:816–821

    Article  PubMed  Google Scholar 

  78. Maeda R, Isowa N, Onuma H et al (2008) Pulmonary intestinal-type adenocarcinoma. Interact Cardiovasc Thorac Surg 7:349–351. doi:10.1510/icvts.2007.168716

    Article  PubMed  Google Scholar 

  79. Li HC, Schmidt L, Greenson JK et al (2009) Primary pulmonary adenocarcinoma with intestinal differentiation mimicking metastatic colorectal carcinoma: case report and review of literature. Am J Clin Pathol 131:129–133. doi:10.1309/AJCPB04XWICTFERL

    Article  PubMed  Google Scholar 

  80. Hatanaka K, Tsuta K, Watanabe K et al (2011) Primary pulmonary adenocarcinoma with enteric differentiation resembling metastatic colorectal carcinoma: a report of the second case negative for cytokeratin 7. Pathol Res Pract 207:188–191. doi:10.1016/j.prp.2010.07.005

    Article  CAS  PubMed  Google Scholar 

  81. Lin D, Zhao Y, Li H et al (2013) Pulmonary enteric adenocarcinoma with villin brush border immunoreactivity: a case report and literature review. J Thorac Dis 5(1):E17–E20. doi:10.3978/j.issn.2072-1439.2012.06.06

    Article  PubMed  PubMed Central  Google Scholar 

  82. Wang CX, Liu B, Wang YF et al (2014) Pulmonary enteric adenocarcinoma: a study of the clinicopathologic and molecular status of nine cases. Int J Clin Exp Pathol 7:1266–1274

    PubMed  PubMed Central  Google Scholar 

  83. László T, Lacza A, Tóth D et al (2014) Pulmonary enteric adenocarcinoma indistinguishable morphologically and immunohistologically from metastatic colorectal carcinoma. Histopathology 65:283–287. doi:10.1111/his.12403

    Article  PubMed  Google Scholar 

  84. Handa Y, Kai Y, Ikeda T et al (2015) Pulmonary enteric adenocarcinoma. Gen Thorac Cardiovasc Surg Jul 3. [Epub ahead of print]

    Google Scholar 

  85. Metro G, Valtorta E, Siggillino A et al (2015) Enteric-type adenocarcinoma of the lung harbouring a novel KRAS Q22K mutation with concomitant KRAS polysomy: a case report. Ecancermedicalscience 9:559. doi:10.3332/ecancer.2015.559

    Article  PubMed  PubMed Central  Google Scholar 

  86. Garajová I, Funel N, Fiorentino M et al (2015) MicroRNA profiling of primary pulmonary enteric adenocarcinoma in members from the same family reveals some similarities to pancreatic adenocarcinoma-a step towards personalized therapy. Clin Epigenetics 7:129. doi:10.1186/s13148-015-0162-5

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yukio Nakatani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Nakatani, Y., Yonemori, Y., Matsushima, J., Yazawa, T. (2017). Classification of Adenocarcinoma of the Lung, with a Special Reference to Prognosis. In: Takiguchi, Y. (eds) Molecular Targeted Therapy of Lung Cancer. Springer, Singapore. https://doi.org/10.1007/978-981-10-2002-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2002-5_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2000-1

  • Online ISBN: 978-981-10-2002-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics