Skip to main content

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 246))

  • 991 Accesses

Abstract

The first observation of quasicrystal was done in April 1982, while D. Shechtman as guest scholar was working in the Bureau of Standards in USA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Bindi L, Steinhardt P J, Yao N and Lu P J, 2009, Natural quasicrystals, Science, 324, 1306-1309.

  2. 2.

    Pauling L, 1985, Apparent icosahedral symmetry is due to directed multiple twinning of cubic crystals, Nature, 317, 512-514.

References

  1. Shechtman D, Blech I, Gratias D and Cahn J W, 1984, Metallic phase with long-range orientational order and no translational symmetry, Phys Rev Lett, 53(20), 1951-1953.

    Google Scholar 

  2. Levine D and Steinhardt P J, 1984, Quasicrystals: A new class of ordered structure. Phys Rev Lett, 53(26), 2477-2480.

    Google Scholar 

  3. Ye H Q, Wang D and Kuo K H, 1985, Five-fold symmetry in real and reciprocal space, Ultramicrossopy, 16(2), 273-277.

    Google Scholar 

  4. Zhang Z, Ye H Q and Kuo K H, 1985, A new icosahedral phase with m35 symmetry. Phil Mag A, 52(6), L49-L52.

    Google Scholar 

  5. Feng Y C, Lu G and Witers R I, 1989, An incommensurate structure with cubic point group symmetry in rapidly solidified V-Vi-Si alloy. J Phys Condens Matter, 1(23),3695-3700.

    Google Scholar 

  6. Bendersky L,1985, Quasicrystal with one-dimensional translational symmetry and a tenfold rotation axis, Phys Rev Lett, 55(14), 1461-1463.

    Google Scholar 

  7. Chattopadhyay K, Lele S and Thangarai N et al, 1987,Vacancy ordered phases and one-dimensional quasiperiodicity, Acta Metall, 35(3), 727-733.

    Google Scholar 

  8. Fung K K, Yang C Y and Zhou Y Q et al, 1986, Icosahedrally related decagonal quasicrystal in rapidly cooled Al-14-at.%-Fe alloy. Phys Rev Lett, 56(19), 2060-2063.

    Google Scholar 

  9. Urban K, Mayer J, Rapp M, Wilkens M, Csanady, A, and Fidler J, 1986, Studies on aperiodic crystals in Al-Mn and Al-V alloys by means of transmission electron microscopy, Journal de Physique Colloque, 47C(3), 465-475.

    Google Scholar 

  10. Wang N, Chen H and Kuo K H, 1987,Two-dimensional quasicrystal with eightfold rotational symmetry, Phys Rev Lett, 59(9),1010-1013.

    Google Scholar 

  11. Li X Z and Guo K H, 1988, Decagonal quasicrystals with different periodicities along the tenfold axis in rapidly solidified AlNi alloys. Phil Mag Lett, 58(3), 167-171.

    Google Scholar 

  12. Merdin R, Bajema K, Clarke R, Juang F-Y and Bhattacharya P K, 1985,Quasiperiodic GaAs-AlAs heterostructures, Phys Rev Lett, 55(17), 1768-1770.

    Google Scholar 

  13. Hu A, Tien C and Li X et al, 1986, X-ray diffraction pattern of quasiperiodic (Fibonacci) Nb-Cu superlattices, Phys Lett A, 119(6), 313-314.

    Google Scholar 

  14. Feng D, Hu A, Chen K J et al, 1987, Research on quasiperiodic superlattice, Mater Sci Forum, 22 (24), 489-498,.

    Google Scholar 

  15. Terauchi H, Noda Y, Kamigami K et al, 1988, X-Ray diffraction patterns of configuration Fibonacci lattices, J Phys Jpn, 57(7), 2416-2424.

    Google Scholar 

  16. Chen K J, Mao G M and Fend D et al, 1987,Quasiperiodic a-Si: H/a-SiNx: H multilayer structures, J Non-cryst Solids, 97(1), 341-344.

    Google Scholar 

  17. Yang W G, Wang R H and Gui J,1996, Some new stable one-dimensional quasicrystals in Al 65 Cu 20 Fe 10 Mn 5 alloy, Phil Mag Lett, 74(5), 357-366.

    Google Scholar 

  18. Penrose R.,1974, The role of aesthetics in pure and applied mathematical research. In: Bulletin of the Institute of Mathematics and Its Applications (Bull. Inst. Math. Appl.). Southend-on-Sea, 10, ISSN 0146-3942, 266–271; Pentaplexity - A Class of non-periodic tilings of the plane. In: The Mathematical Intelligencer. Vol.2, No. 1, Springer, New York 1979, ISSN 0343-6993, pp. 32–37.

    Google Scholar 

  19. Biham O, Mukamel D and Shtrikman, 1986, Symmetry and stability of icosahedral and other quasicrystalline phases, Phys. Rev. Lett., 56(20),2191-2194.

    Google Scholar 

  20. Scheater R J and Bendersky L A, 1988, Introduction to Quasicrystals, ed. By Jaric M. V.,Boston, MA: Academic Press.

    Google Scholar 

  21. Widom M, Deng D P and Henleg C L, 1989,Transfer-matrix analysis of a two-dimensional quasicrystal, Phys. Rev. Lett., 63(3), 310-313.

    Google Scholar 

  22. Yang W G, Ding D H, Wang R H and Hu C Z, Thermodynamics of equilibrium properties of quasicrystals. Z Phys. B, 100 (3), 447-454.

    Google Scholar 

  23. Hu C Z, Yang W G, Wang R H and Ding D H, 1997, Quasicrystal Symmetry and Physical Properties. Progress in Phys. (in Chinese), 17 (4). 345-367.

    Google Scholar 

  24. Fan T Y, 1999, A study on specific heat of one-dimensional hexagonal quasicrystal, J. Phys.:Condens. Matter, 11(45), L513-517.

    Google Scholar 

  25. Fan T Y and Mai Y W, 2003, Partition function and state equation of point group 12 mm two-dimensional dodecagonal quasicrystals, Euro. Phys. J.B, 31(2),17-21.

    Google Scholar 

  26. Li C Y and Liu Y Y, 2001, Phason-strain influence on low-temperature specific heat of the decagonal Al-Ni-Co quasicrystal, Chin. Phys. Lett., 18(4), 570-573.

    Google Scholar 

  27. Li C Y and Liu Y Y, 2001,Low-temperature lattice excitation of icosahedral Al-Mn-Pd quasicrystals, Phys. Rev. B, 63(6),064203-064211.

    Google Scholar 

  28. Biggs B D, Li Y and Poon S J, 1991, Electronic properties of icosahedral, approximant, and amorphous phases of an Al-Cu-Fe alloy, Phys. Rev. B, 43(10), 8747-8750.

    Google Scholar 

  29. Lindqvist P, Berger C, Klein T et al, 1993, Role of Fe and sign reversal of the Hall coefficient in quasicrystalline Al-Cu-Fe, Phys. Rev. B, 48(1), 630-633.

    Google Scholar 

  30. Klein T, Gozlen A, Berger C, Cyrot-Lackmann F, Calvayrac Y and Quivy A, 1990, Anomalous transport properties in pure AlCuFe icosahedral phases of high structural quality, Europhys.Lett., 13(2), 129-134.

    Google Scholar 

  31. Pierce F S, Guo Q and Poon S J, 1994, Enhanced insulatorlike electron transport behavior of thermally tuned quasicrystalline states of Al-Pd-Re alloys, Phys. Rev. Lett., 73(16), 2220-2223.

    Google Scholar 

  32. Wang A J, Zhou X, Hu C Z and Miao L, 2005,Properties of nonlinear elasticity of quasicrystals with five-fold symmetry, Wuhan University Journal, Nat. Sci., 51(5), 536-566. (in Chinese).

    Google Scholar 

  33. Zhou X, Hu C Z, Gong P and Qiu S D, 2004, Piezoresistance properties of quasicrystals,J. Phys.:Condens. Matter, 16(30), 5419-5425.

    Google Scholar 

  34. Homes C C,Timusk T, Wu X, Altounian Z, Sahnoune A and Ström-Olsen J O,1991,Optical conductivity of the stable icosahedral quasicrystal Al63.5Cu24.5Fe12, Phy. Rev. Lett., 67(19), 2694–2696.

    Google Scholar 

  35. Burkov S E, 1992, Optical conductivity of icosahedral quasi-crystals, J. Phys.: Condens. Matter, 4 (47), 9447–9458.

    Google Scholar 

  36. BasovD N, Timusk T, Barakat F, Greedan J and Grushko B, 1994,Anisotropic optical conductivity of decagonal quasicrystals, Phys. Rev. Lett., 72(12), 1937–1940.

    Google Scholar 

  37. Villa D, Enoch S and Tayeb G et al, 2005, Band gap formation and multiple scattering in photonic quasicrystals with a Penrose-type lattice, Phys. Rev. Lett., 94(18), 183903-183907.

    Google Scholar 

  38. Didier Mayou, 2000,Generalized Drude Formula for the Optical Conductivity of Quasicrystals, Phys. Rev. Lett., 85(6), 1290-1293.

    Google Scholar 

  39. Notomi M, Suzuk H and Tamamura T et al, 2004,Lasing action due to the two-dimensional quasiperiodicity of photonic quasicrystals with a Penrose lattice, Phys. Rev. Lett., 90(12), 123906-123910.

    Google Scholar 

  40. Feng Z F, Zhang X D and Wang Y Q, 2005,Negative refraction and imaging using 12-fold-symmetry quasicrystals, Phys. Rev. Lett., 94(24), 247402-247406.

    Google Scholar 

  41. Lifshitz R, Arie A and Bahabad A, 2005, Photonic quasicrystals for nonlinear optical frequency conversion, Phys. Rev. Lett., 95(13), 13390.

    Google Scholar 

  42. Marn W and Megens M, 2005, Experimental measurement of the photonic properties of icosahedral quasicrystals. Nature, 436(7053), 993–996.

    Google Scholar 

  43. Kohmoto M and Sutherland B, 1986, Electronic states on a Penrose lattice, Phys Rev Lett, 56(25), 2740-2743.

    Google Scholar 

  44. Sutherland B, 1986,Simple system with quasiperiodic dynamics: a spin in a magnetic field, Phys Rev B, 34(8), 5208-5211.

    Google Scholar 

  45. Fujiwara T and Yokokawa T, 1991,Universal pseudogap at Fermi energy in quasicrystals, Phys. Rev. Lett., 66(3),333-336.

    Google Scholar 

  46. Casdagli M, 1986, Symbolic dynamics for the renormalization map of a quasiperiodic Schroedinger equation, Commun. Math. Phys. 107(2), 295–318.

    Google Scholar 

  47. Sueto A, 1987, The spectrum of a quasiperiodic Schroedinger operator, Comm. Math. Phys, 111(3), 409–415.

    Google Scholar 

  48. Kotani S, 1989, Jacobi matrices with random potentials taking finitely many values, Rev. Math. Phys. 1(1), 129–133.

    Google Scholar 

  49. Bellissard J, Lochum B, Scoppola E, Testart D, 1989, Spectral properties of one dimensional quasi-crystals, Commun. Math. Phys. 125(3), 527–543.

    Google Scholar 

  50. Bovier A, Ghez J-M, 1993, Spectrum properties of one-dimensional Schroedinger operators with potentials generated by substitutions, Commun. Math. Phys. 158(1), 45-66.

    Google Scholar 

  51. Liu Q H, Tan B, Wen Z X, Wu J, 2002, Measure zero spectrum of a class of Schroedinger operators, J. Statist. Phys. 106(3-4), 681–691.

    Google Scholar 

  52. Lenz D, 2002, Singular spectrum of Lebesgue measure zero for one-dimensional quasicrystals, Comm. Math. Phys. 227(1), 119–130.

    Google Scholar 

  53. Furman A, 1997, On the multiplicative ergodic theorem for uniquely ergodic systems, Ann. Inst. H. Poincare Probab. Statist. 33 (6), 797–815.

    Google Scholar 

  54. Damanik D, Lenz D, 2006, A, condition of Boshernitzan and uniform convergence in the multiplicative ergodic theorem, Duke Math. J. 133(1), 95–123.

    Google Scholar 

  55. Liu Q H, Qu Y H, 2011, Uniform Convergence of Schroedinger Cocycles over Simple Toeplitz Subshift, Annales Henri Poincare, 12(1), 153–172.

    Google Scholar 

  56. Liu Q H, Qu Y H, 2012, Uniform Convergence of Schroedinger Cocycles over bounded Toeplitz Subshift, Annales Henri Poincare, 13(6), 1483-1550.

    Google Scholar 

  57. Liu Q H, Wen Z Y, 2004, Hausdorff dimension of spectrum of one-dimensional Schroedinger operator with Sturmian potentials, Potential Analysis, 20(1), 33–59.

    Google Scholar 

  58. Damanik D, Embree M, Gorodetski A, Tcheremchantsev S, 2008, the fractal dimension of the spectrum of the Fibonacci Hamiltonian, Commun. Math. Phys. 280(2), 499-516.

    Google Scholar 

  59. Liu Q H, Peyrière J, Wen Z Y, 2007, Dimension of the spectrum of one-dimensional discrete Schrodinger operators with Sturmian potentials, Comptes Randus Mathematique, 345(12), 667–672.

    Google Scholar 

  60. Fan S, Liu Q H, Wen Z Y, 2011, Gibbs-like measure for spectrum of a class of quasi-crystals, Ergodic Theory Dynam. Systems, 31(6), 1669-1695.

    Google Scholar 

  61. Fischer S, Exner A, Zielske K, Perlich J, Deloudi S, Steuer W, Linder P and Foestor S, 2011, Colloidal quasicrystals with 12-fold and 18-fold symmetry, Proc Nat Ac Sci, 108, 1810-1814.

    Google Scholar 

  62. Talapin V D, Shevechenko E V, Bodnarchuk M I, Ye X C, Chen J and Murray C B, 2009, Quasicrystalline order in self-assembled binary nanoparticle superlattices, Nature, 461, 964-967.

    Google Scholar 

  63. Zeng X ,Ungar G, Liu Y, Percec V, Dulcey A E,Hobbs J K, 2004, Supermolecular dentritic liquid quasicrystals, Nature, 428, 157-160.

    Google Scholar 

  64. Takano K, 2005, A mesoscopic Archimedian tiling having a complexity in polymeric stars, J Polym Sci Pol Phys, 43, 2427-2432.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tian-You Fan .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Science Press and Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Fan, TY. (2016). Quasicrystal and Its Properties. In: Mathematical Theory of Elasticity of Quasicrystals and Its Applications. Springer Series in Materials Science, vol 246. Springer, Singapore. https://doi.org/10.1007/978-981-10-1984-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-1984-5_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-1982-1

  • Online ISBN: 978-981-10-1984-5

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics