Skip to main content

Universal Fuzzy Models and Universal Fuzzy Controllers for Stochastic Non-affine Nonlinear Systems

  • Chapter
  • First Online:

Part of the book series: Springer Theses ((Springer Theses))

Abstract

This chapter discusses the problem of universal fuzzy models and universal fuzzy controllers for stochastic non-affine nonlinear systems. The underlying mechanism of stochastic fuzzy logic is first discussed and a stochastic generalized fuzzy model with new stochastic fuzzy rule base is then given. Based on their function approximation capability, this kind of stochastic generalized fuzzy models are shown to be universal fuzzy models for stochastic non-affine nonlinear systems under some sufficient conditions. An approach to stabilization controller design for stochastic non-affine nonlinear systems is then developed through their stochastic generalized T–S fuzzy approximation models. Then the results of universal fuzzy con- trollers for two classes of stochastic nonlinear systems, along with constructive procedures to obtain the universal fuzzy controllers, are also provided, respectively. Finally, a numerical example is presented to illustrate the effectiveness of the proposed approach.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Mao, X. (2007). Stochastic differential equations and applications (2nd ed.). Chichester: Horwood Publication.

    MATH  Google Scholar 

  2. Liu, S., Jiang, Z., & Zhang, J. (2008). Global output-feedback stabilization for a class of stochastic non-minimum-phase nonlinear systems. Automatica, 44(8), 1944–1957.

    Article  MathSciNet  MATH  Google Scholar 

  3. Berman, N., & Shaked, U. (2004). \(\cal {H}_{\infty }\) like control for nonlinear stochastic systems. Systems and Control Letters, 55(3), 123–135.

    MathSciNet  Google Scholar 

  4. Xie, X., & Tan, J. (2009). Adaptive state-feedback stabilization of high-order stochastic systems with nonlinear parameterization. Automatica, 45(1), 126–133.

    Article  MathSciNet  MATH  Google Scholar 

  5. Li, W., Jing, Y., & Zhang, S. (2011). Adaptive state-feedback stabilization for a large class of high-order stochastic nonlinear systems. Automatica, 47(4), 819–828.

    Article  MathSciNet  MATH  Google Scholar 

  6. Hu, L., & Mao, X. (2008). Almost sure exponential stabilisation of stochastic systems by state-feedback control. Automatica, 44(2), 465–471.

    Article  MathSciNet  MATH  Google Scholar 

  7. Xu, S., & Chen, T. (2002). Robust \(\cal {H}_{\infty }\) control for uncertain stochastic system with time delay. IEEE Transactions on Automatic Control, 47(12), 2089–2094.

    Article  Google Scholar 

  8. Zhou, S., Ren, W., & Lam, J. (2011). Stabilization for T-S model based uncertain stochastic systems. Information Sciences, 181(4), 779–791.

    Article  MathSciNet  MATH  Google Scholar 

  9. Zhang, B., Xu, S., Zong, G., & Zou, Y. (2007). Delay-dependent stabilization for stochastic fuzzy systems with time delays. Fuzzy Sets and Systems, 158(20), 2238–2250.

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen, B.-S., Lee, B.-K., & Guo, L.-B. (2004). Optimal tracking design for stochastic fuzzy systems. IEEE Transaction on Fuzzy Systems, 11(6), 796–813.

    Article  Google Scholar 

  11. Chang, W. J., Ku, C. C., & Huang, P. H. (2010). Robust fuzzy control for uncertain stochastic time-delay Takagi-Sugeno fuzzy models for achieving passivity. Fuzzy Sets and Systems, 161(15), 2012–2032.

    Article  MathSciNet  MATH  Google Scholar 

  12. Zhang, H., Wang, Y., & Liu, D. (2008). Delay-Dependent guaranteed cost control for uncertain stochastic fuzzy systems with multiple time delays. IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, 38(1), 126–140.

    Article  Google Scholar 

  13. Liang, J., Wang, Z., & Liu, X. (2010). On passivity and passification of stochastic fuzzy systems with delays: the discrete-time case. IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, 40(3), 964–969.

    Article  MathSciNet  Google Scholar 

  14. Hu, L., & Yang, A. (2009). Fuzzy-model-based control of nonlinear stochastic systems with time-delay. Nonlinear Analysis: Theory, Methods & Applications, 71(12), e2855–e2865.

    Article  MathSciNet  MATH  Google Scholar 

  15. Wang, Z. D., Ho, D. W. C., & Liu, X. H. (2004). A note on the robust stability of uncertain stochastic fuzzy systems with time-delays. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 34(4), 570–576.

    Article  Google Scholar 

  16. Liu, M., Cao, X., & Shi, P. (2013). Fault estimation and tolerant control for fuzzy stochastic systems. IEEE Transaction on Fuzzy Systems, 21(2), 221–229.

    Article  Google Scholar 

  17. Wu, L., & Zheng, W. X. (2009). \(\cal {L}_{2}-\cal {L}_{\infty }\) control of nonlinear fuzzy \(It\hat{o}\) stochastic delay systems via dynamic output feedback. IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, 39(5), 1308–1315.

    Article  MathSciNet  Google Scholar 

  18. Su, X., Wu, L., Shi, P., & Song, Y. D. (2012). \(\cal {H}_{\infty }\) model reduction of Takagi-Sugeno Fuzzy Stochastic Systems. IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, 42(6), 1574–1585.

    Article  Google Scholar 

  19. Tseng, C. S. (2007). Robust fuzzy filter design for a class of nonlinear stochastic systems. IEEE Transactions on Fuzzy Systems, 15(2), 261–274.

    Article  Google Scholar 

  20. Dong, H., Wang, Z., Lam, J., & Gao, H. (2012). Fuzzy-Model-Based robust fault detection with stochastic mixed time delays and successive packet dropouts. IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, 42(2), 365–376.

    Article  Google Scholar 

  21. Buckley, J. J. (1992). Universal fuzzy controllers. Automatica, 28(6), 1245–1248.

    Article  MathSciNet  MATH  Google Scholar 

  22. Tanaka, K., & Wang, H. O. (2001). Fuzzy control systems design and analysis: A LMI approach. New York: Wiley.

    Book  Google Scholar 

  23. Cao, S. G., Rees, N. W., & Feng, G. (2001). Universal fuzzy controllers for a class of nonlinear systems. Fuzzy Sets and Systems, 122(1), 117–123.

    Article  MathSciNet  MATH  Google Scholar 

  24. Cao, S. G., Rees, N. W., & Feng, G. (2001). Mamdani-type fuzzy controllers are universal fuzzy controllers. Fuzzy Sets and Systems, 123(3), 359–367.

    Article  MathSciNet  MATH  Google Scholar 

  25. Liu, Z., & Li, H.-X. (2005). A probabilistic fuzzy logic system for modeling and control. IEEE Transaction on Fuzzy Systems, 13(6), 848–859.

    Article  Google Scholar 

  26. Liu, Z., & Li, H. X. (2005). A probabilistic fuzzy logic system for uncertainty modeling. In Proceedings of the 2010 IEEE International Conference on Systems Man and Cybernetics (SMC) (pp. 3853-3858), October 2005.

    Google Scholar 

  27. Li, H.-X., & Liu, Z. (2008). A Probabilistic Neural-Fuzzy Learning System for Stochastic Modeling. IEEE Transaction on Fuzzy Systems, 16(4), 898–908.

    Article  Google Scholar 

  28. Meghdadi, A. H., & Akbarzadeh, M. R. (2001). Probablistic fuzzy logic and probabilistic fuzzy systems. Proceedings of the 2001 IEEE International Conference on Fuzzy Systems (pp. 1127–1130), Melbourne, Australia, July 2001.

    Google Scholar 

  29. Zhang, G., & Li, H. X. (2010). A probabilistic fuzzy learning system for pattern classification. Proceedings of the 2010 IEEE International Conference on Systems Man and Cybernetics (SMC) (pp. 2336–2341), Istanbul, Turkey, October 2010.

    Google Scholar 

  30. Liu, Z., & Li, H.-X. (2009). Probabilistic fuzzy logic system: A tool to process stochastic and imprecise information. Proceedings of the 2009 IEEE International Conference on Fuzzy Systems (pp. 848-853), Jeju Island, Korea, August 2009.

    Google Scholar 

  31. Berg, J. V. D., Kaymak, U., & Almeida, R. J. (2012). Conditional density estimation using probabilistic fuzzy systems. IEEE Transaction on Fuzzy Systems, 21(5), 869–882.

    Article  Google Scholar 

  32. Gao, Q., Zeng, X.-J., Feng, G., Wang, Y., & Qiu, J. (2012). T-S-Fuzzy-Model-Based approximation and controller design for general nonlinear systems. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 42(4), 1131–1142.

    Article  Google Scholar 

  33. Gao, Q., Feng, G., Wang, Y., & Qiu, J. (2012). Universal fuzzy controllers based on generalized T-S fuzzy models. Fuzzy Sets and Systems, 201(6), 55–70.

    Article  MathSciNet  MATH  Google Scholar 

  34. Zeng, X. -J., Keane, J. A., & Wang, D. (2006). Fuzzy systems approach to approximation and stabilization of conventional affine nonlinear systems. In Proceedings of the 2006 IEEE International Conference on Fuzzy Systems (pp. 277–284), Vancouver, BC, Canada, July 2006.

    Google Scholar 

  35. Zeng, X. -J., & Singh, M. G. (1994). Approximation theory of fuzzy systems-SISO case. IEEE Transactions on Fuzzy Systems, 2(2), 162–176.

    Google Scholar 

  36. Zeng, X.-J., & Singh, M. G. (1995). Approximation theory of fuzzy systems-MIMO case. IEEE Transactions on Fuzzy Systems, 3(2), 219–235.

    Article  Google Scholar 

  37. Boyd, S., El Ghaoui, L., Feron, E., & Balakrishnan, V. (1994). Linear matrix inequalities in systems and control theory. Philadelphia: SIAM.

    Book  MATH  Google Scholar 

  38. Johansson, M., Rantzer, A., & Arzen, K. E. (1999). Piecewise quadratic stability of fuzzy systems. IEEE Transactions on Fuzzy Systems, 7(6), 713–722.

    Article  Google Scholar 

  39. Zhou, S., Lam, J., & Xue, A. (2007). \(\cal {H}_{\infty }\) filtering of discrete-time fuzzy systems via basis-dependent Lyapunov function approach. Fuzzy Sets and Systems, 158(2), 180–193.

    Article  MathSciNet  MATH  Google Scholar 

  40. Buckley, J. J. (1993). Sugeno type controllers are universal controllers. Fuzzy Sets and Systems, 53(10), 299–303.

    Article  MathSciNet  MATH  Google Scholar 

  41. Ying, H. (1998). General Takagi-Sugeno fuzzy systems with simplified linear rule consequent are universal controllers, models and filters. Information Science, 108(1–4), 91–107.

    Article  MathSciNet  MATH  Google Scholar 

  42. Nguyen, H. T., Kreinovich, V., & Sirisaengtaksin, O. (1996). Fuzzy control as a universal control tool. Fuzzy Sets and Systems, 80(1), 71–86.

    Article  MathSciNet  MATH  Google Scholar 

  43. Chak, C. K., Feng, G., & Cao, S. G. (1996). Universal fuzzy controllers. Proceedings of the 1996 IEEE International Conference on Fuzzy Systems (pp. 2020–2025), New Orleans, LA.

    Google Scholar 

  44. Tsinias, J., & Spiliotis, J. (1999). A converse Lyapunov theorem for robust exponential stochastic stability. Lecture Notes in Control and Information Sciences, Workshop of the Nonlinear Control (Vol. 246, pp. 355–374). Ghent, Berlin: Springer.

    Google Scholar 

  45. Gao, Q., Feng, G., Wang, Y., & Qiu, J. (2013). Universal fuzzy models and universal fuzzy controllers for stochastic non-affine nonlinear systems. IEEE Transactions on Fuzzy Systems, 21(2), 328–341.

    Article  Google Scholar 

  46. Liu, S., Zhang, J., & Jiang, Z. (2008). A notion of stochastic input-to-state stability and its application to stability of cascaded stochastic nonlinear systems. Acta Mathematicae Applicatae Sinica, 24(1), 141–156.

    Article  MathSciNet  MATH  Google Scholar 

  47. Abedi, F., Hassan, M. A., & Arifin, N. M. D. (2011). Control Lyapunov function for feedback stabilization of affine in the control stochastic time-varying systems. International Journal of Mathematical Analysis, 5(4), 175–188.

    MathSciNet  MATH  Google Scholar 

  48. Tsinias, J. (1998). Stochast input-to-state stability and applications to global feedback stabilization. International Journal of Control, 71(5), 907–930.

    Article  MathSciNet  MATH  Google Scholar 

  49. Higham, D. (2001). An algorithmic introduction to numerical simulation of stochastic differential equations. SIAM Review, 43(3), 525–546.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Gao .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Gao, Q. (2017). Universal Fuzzy Models and Universal Fuzzy Controllers for Stochastic Non-affine Nonlinear Systems. In: Universal Fuzzy Controllers for Non-affine Nonlinear Systems. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-10-1974-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-1974-6_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-1973-9

  • Online ISBN: 978-981-10-1974-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics