Skip to main content

Universal Fuzzy Models and Universal Fuzzy Controllers for Non-affine Nonlinear Systems

  • Chapter
  • First Online:
Universal Fuzzy Controllers for Non-affine Nonlinear Systems

Part of the book series: Springer Theses ((Springer Theses))

Abstract

This chapter concerns the universal fuzzy models and universal fuzzy controllers problem for non-affine nonlinear systems based on a class of generalized T–S fuzzy models. Universal function approximation capability of this kind of T–S fuzzy models is shown first, based on which the problem of universal fuzzy models is investigated. Detailed algorithm of constructing T–S approximation fuzzy models is provided. Then we show that the semi-global stabilization problem of a non-affine nonlinear system can be solved as a robust stabilization problem of a uncertain T–S fuzzy system. The we discuss the universality of the fuzzy control approach in the context of two classes of nonlinear systems, and we provide constructive procedures to obtain the universal fuzzy controllers. An example is finally presented to show the effectiveness of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schoenwald, D. A., & Ozguner, I. (1994). Robust stabilization of nonlinear systems with parametric uncertainty. IEEE Transactions on Automatic Control, 39(8), 1751–1755.

    Article  MathSciNet  MATH  Google Scholar 

  2. Liberzon, D., & Hespanha, J. P. (2005). Stabilization of nonlinear systems with limited information feedback. IEEE Transactions on Automatic Control, 50(6), 910–915.

    Article  MathSciNet  Google Scholar 

  3. Marconi, L., Praly, L., & Isidori, A. (2010). Robust asymptotic stabilization of nonlinear systems with non-hyperbolic zero dynamics. IEEE Transactions on Automatic Control, 55(4), 907–921.

    Article  MathSciNet  Google Scholar 

  4. Qu, Z. (1998). Robust control of nonlinear uncertain systems. New York: Wiley-Interscience.

    MATH  Google Scholar 

  5. Hahn, W. (1968). Stability of motion. Berlin: Springer.

    Google Scholar 

  6. Khalil, H. K. (2002). Nonlinear systems (3rd ed.). Upper Saddle River: Prentice Hall.

    MATH  Google Scholar 

  7. Feng, G. (2010). Analysis and synthesis of fuzzy control systems: A model-based approach. Boca Raton: CRC Press.

    Book  MATH  Google Scholar 

  8. Tanaka, K., & Wang, H. O. (2001). Fuzzy control systems design and analysis: A LMI approach. New York: Wiley.

    Book  Google Scholar 

  9. Feng, G. (2006). A survey on analysis and design of model-based fuzzy control systems. IEEE Transactions on Fuzzy Systems, 14(5), 676–697.

    Article  Google Scholar 

  10. Sala, A., Guerra, T. M., & Babuska, R. (2005). Perspectives of fuzzy systems and control. Fuzzy Sets and Systems, 156, 432–444.

    Article  MathSciNet  MATH  Google Scholar 

  11. ying, H. (2000). Fuzzy control and modeling: analytical foundations and applications. New York: Wiley-IEEE Press.

    Book  Google Scholar 

  12. Wang, L. X., & Mendel, J. M. (1992). Fuzzy basis functions, universal approximation, and orthogonal least squares learning. IEEE Transactions on Neural Networks, 3(5), 807–814.

    Article  Google Scholar 

  13. Wang, L. (1998). Universal approximation by hierarchical fuzzy systems. Fuzzy Sets and Systems, 93(2), 223–230.

    Article  MathSciNet  MATH  Google Scholar 

  14. Wang, G. (1998). Fuzzy continuous input-output controllers are universal approximators. Fuzzy Sets and Systems, 97(1), 95–99.

    Article  MathSciNet  MATH  Google Scholar 

  15. Zeng, X.-J., & Singh, M. G. (1994). Approximation theory of fuzzy systems-SISO case. IEEE Transactions on Fuzzy Systems, 2(2), 162–176.

    Article  Google Scholar 

  16. Zeng, X.-J., & Singh, M. G. (1995). Approximation theory of fuzzy systems-MIMO case. IEEE Transactions on Fuzzy Systems, 3(2), 219–235.

    Article  Google Scholar 

  17. Zeng, X.-J., & Keane, J. A. (2005). Approximation capabilities of hierarchical fuzzy systems. IEEE Transactions on Fuzzy Systems, 13(5), 659–672.

    Article  Google Scholar 

  18. Zeng, X.-J., & Singh, M. G. (1996). A relationship between membership functions and approximation accuracy in fuzzy systems. IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, 26(1), 176–180.

    Article  Google Scholar 

  19. Zeng, X.-J., & Singh, M. G. (1996). Approximation accuracy analysis of fuzzy systems as function approximators. IEEE Transactions on Fuzzy Systems, 4(1), 44–63.

    Article  Google Scholar 

  20. Zeng, X. -J., Keane, J. A., & Wang, D. (2006). Fuzzy systems approach to approximation and stabilization of conventional affine nonlinear systems. Proceedings of the 2006 IEEE International Conference on Fuzzy Systems (pp. 277–284), Vancouver, BC, Canada, July.

    Google Scholar 

  21. Fantuzzi, C., & Rovatti, R. (1996). On the approximation capabilities of the homogenerous Takagi–Sugeno model. Proceedings of the 1996 IEEE International Conference on Fuzzy Systems (pp. 1067–1072), New Orleans, LA.

    Google Scholar 

  22. Zeng, K., Zhang, N. Y., & Xu, W. L. (2000). A comparative study on sufficient conditions for Takagi–Sugeno fuzzy systems as universal approximators. IEEE Transactions on Fuzzy Systems, 8(6), 773–780.

    Article  Google Scholar 

  23. Ying, H., Ding, Y., Li, S., & Shao, S. (1999). Comparison of necessary conditions for typical Takagi–Sugeno and Mamdani fuzzy systems as universal approximators. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 29(5), 508–514.

    Article  Google Scholar 

  24. Castro, J. L., & Delgado, M. (1996). Fuzzy systems with defuzzification are universal approximators. IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, 26(1), 149–152.

    Article  Google Scholar 

  25. Buckley, J. J. (1992). Universal fuzzy controllers. Automatica, 28(6), 1245–1248.

    Article  MathSciNet  MATH  Google Scholar 

  26. Buckley, J. J. (1993). Sugeno type controllers are universal controllers. Fuzzy Sets and Systems, 53(10), 299–303.

    Article  MathSciNet  MATH  Google Scholar 

  27. Buckley, J. J., & Hayashi, Y. (1993). Fuzzy input–output controllers are universal approximators. Fuzzy Sets and Systems, 58(3), 273–278.

    Article  MathSciNet  MATH  Google Scholar 

  28. Ying, H. (1998). General Takagi–Sugeno fuzzy systems with simplified linear rule consequent are universal controllers, models and filters. Information Science, 108(1–4), 91–107.

    Article  MathSciNet  MATH  Google Scholar 

  29. Nguyen, H. T., Kreinovich, V., & Sirisaengtaksin, O. (1996). Fuzzy control as a universal control tool. Fuzzy Sets and Systems, 80(1), 71–86.

    Article  MathSciNet  MATH  Google Scholar 

  30. Cao, S. G., Rees, N. W., & Feng, G. (2001). Universal fuzzy controllers for a class of nonlinear systems. Fuzzy Sets and Systems, 122(1), 117–123.

    Article  MathSciNet  MATH  Google Scholar 

  31. Cao, S. G., Rees, N. W., & Feng, G. (2001). Mamdani-type fuzzy controllers are universal fuzzy controllers. Fuzzy Sets and Systems, 123(3), 359–367.

    Article  MathSciNet  MATH  Google Scholar 

  32. Chak, C. K., Feng, G., & Cao, S. G. (1996). Universal fuzzy controllers. Proceedings of the 1996 IEEE International Conference on Fuzzy Systems (pp. 2020–2025), New Orleans, LA.

    Google Scholar 

  33. Feng, G. (2000). Universal fuzzy controllers for discrete-time systems. Proceedings of the 2000 IEEE International Conference on Decision and Control (pp. 394–395), Sydney, NSW.

    Google Scholar 

  34. Dong, J., Wang, Y., & Yang, G. (2009). Control synthesis of continuous-time T-S fuzzy systems with local nonlinear models. IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, 39(5), 1245–1258.

    Article  Google Scholar 

  35. Márquez, J. M. A., \(\tilde{{\rm P}}\)ina, A. J. B., & Arias, M. E. G. (2009). A general and formal methodology to design stable nonlinear fuzzy control systems. IEEE Transactions on Fuzzy Systems, 17(5), 1081–1091.

    Google Scholar 

  36. Song, C. H., Ye, J. C., Liu, D. R., & Kang, Q. (2009). Generalized receding horizon control of fuzzy systems based on numerical optimization algorithm. IEEE Transactions on Fuzzy Systems, 17(6), 1336–1352.

    Article  Google Scholar 

  37. Xu, C. Y., & Shin, Y. C. (2008). A fuzzy inverse model construction method for general monotonic multi-input-single-output (MISO) systems. IEEE Transactions on Fuzzy Systems, 16(5), 1216–1231.

    Article  Google Scholar 

  38. Chen, S. H., & Juang, J. C. (2008). Improving nonlinear T-S fuzzy controller design using sum of squares technique. Proceedings of the 2008 SICE Annual Conference (pp. 1845–1850), Aug 2008, Japan.

    Google Scholar 

  39. Boyd, S., El Ghaoui, L., Feron, E., & Balakrishnan, V. (1994). Linear matrix inequalities in systems and control theory. Philadelphia: SIAM.

    Book  MATH  Google Scholar 

  40. Gao, Q., Zeng, X.-J., Feng, G., Wang, Y., & Qiu, J. (2012). T-S-fuzzy-model-based approximation and controller design for general nonlinear systems. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 42(4), 1131–1142.

    Article  Google Scholar 

  41. Gao, Q., Feng, G., Wang, Y., & Qiu, J. (2012). Universal fuzzy controllers based on generalized T-S fuzzy models. Fuzzy Sets and Systems, 201(6), 55–70.

    Article  MathSciNet  MATH  Google Scholar 

  42. Lin, Y. D., Sontag, E. D., & Wang, Y. (1996). A smooth converse Lyapunov theorem for robust stability. SIAM Journal on Control and Optimization, 34(1), 124–160.

    Article  MathSciNet  MATH  Google Scholar 

  43. Young, A., Cao, C. Y., Hovakimyan, N., & Lavretsky, E. (2006). Control of a nonaffine double-pendulum system via dynamic inversion and time-scale separation. Proceedings of the 2006 American Control Conference (pp. 1820–1825), Minneapolis, Minnesota, USA.

    Google Scholar 

  44. Cao, S. G., Rees, N. W., & Feng, G. (1999). Analysis and design of fuzzy control systems using dynamic fuzzy-state space models. IEEE Transactions on Fuzzy Systems, 7(2), 192–200.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Gao .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Gao, Q. (2017). Universal Fuzzy Models and Universal Fuzzy Controllers for Non-affine Nonlinear Systems. In: Universal Fuzzy Controllers for Non-affine Nonlinear Systems. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-10-1974-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-1974-6_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-1973-9

  • Online ISBN: 978-981-10-1974-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics