Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 553 Accesses

Abstract

This chapter introduces the basic motivations and ideas of this book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338–353.

    Google Scholar 

  2. Zadeh, L. A. (1968). Fuzzy algorithm. Information and Control, 12, 94–102.

    Google Scholar 

  3. Zadeh, L. A. (1973). “Outline of a new approach to the analysis of complex systems and decision processes”. IEEE Transactions on System, Man and Cybernextics, SMC-3(1), 28–44.

    Google Scholar 

  4. Zadeh, L. A. (1975). The concept of a linguistic variable and its application to approximate reasoning: I. II. III. Information Sciences, 8(3), 199–249.

    Article  MathSciNet  MATH  Google Scholar 

  5. Bellman, R. E., & Zadeh, L. A. (1970). Decision making in a fuzzy environment. Management Science, 17(4), 141–167.

    Article  MathSciNet  MATH  Google Scholar 

  6. Bezdek, J. C., Keller, J. M., Krishnapuram, R., & Pal, N. R. (1999). Fuzzy Models and Algorithms for Pattern Recognition and Image Processing. Boston, MA: Kluwer.

    Book  MATH  Google Scholar 

  7. Tong, R. M. (1977). “A control engineering review of fuzzy systems”.13(6), 559–569.

    Google Scholar 

  8. Bai, Y., Zhuang, H. Q., & Roth, Z. S. (2005). Fuzzy logic control to suppress noises and coupling effects in a laser tracking system. IEEE Transactions on Control Systems and Technology, 13(1), 113–121.

    Google Scholar 

  9. Kadmiry, B., & Driankov, D. (2004). A fuzzy gain-scheduler for the attitude control of an unmanned helicopter. IEEE Transactions on Fuzzy Systems, 12(4), 502–515.

    Google Scholar 

  10. Huang, S. J., & Lin, W. C. (2003). Adaptive fuzzy controller with sliding surface for vehicle suspension control. IEEE Transactions on Fuzzy Systems, 11(4), 550–559.

    Google Scholar 

  11. Frey, C. W., & Kuntze, H. B. (2001). A neuro-fuzzy supervisory control system for industrial batch processes. IEEE Transactions on Fuzzy Systems, 9(4), 570–577.

    Google Scholar 

  12. Kickert, W. J. M., & Van Nauta, H. R. (1976). Lemke, "Application of a fuzzy logic controller in a warm water plant,". Automatica, 12(4), 301–308.

    Google Scholar 

  13. Baturone, I., Moreno-Velo, F. J., Sanchez-Solano, S., & Ollero, A. (2004). Automatic design of fuzzy controllers for car-like autonomous robots. IEEE Transactions on Fuzzy Systems, 12(4), 448–465.

    Google Scholar 

  14. Chiu, S., Chand, S., Moore, D., & Chaudhary, A. (1991). Fuzzy logic for control of roll and moment for a flexible wing aircraft. IEEE Control System Magzine, 11(1), 42–48.

    Google Scholar 

  15. Tanaka, K., & Sano, M. (1994). A robust stabilization problem of fuzzy control systems and its applications to backing up control of a truck-trailer. IEEE Transactions on Fuzzy Systems, 2(2), 119–134.

    Google Scholar 

  16. Zhang, G., Li, H. X. (2010). “A probabilistic fuzzy learning system for pattern classification”. Proceedings of the 2010 IEEE International Conference on Systems Man and Cybernetics (SMC), Istanbul, Turkey, pp. 2336–2341.

    Google Scholar 

  17. Zhang, G., Li, H. X., & Gan, M. (2012). Design a wind speed prediction model using probabilistic fuzzy system. IEEE Transactions on Industrial Informatics, 8(4), 819–827.

    Google Scholar 

  18. Mamdani, E. H., & Assilian, S. (1975). “An experiment in linguistic synthesis with a fuzzy logic controller”.7(1), 1–13.

    Google Scholar 

  19. Lee, C. C. (1990). “Fuzzy logic in control systems: Fuzzy loigic controller-Part I,” IEEE Transactions on System, Man and Cybernextics, 20(2), 404–418.

    Google Scholar 

  20. Lee, C. C. (1990). “Fuzzy logic in control systems: Fuzzy loigic controller-Part II,” IEEE Transactions on System, Man and Cybernextics, 20(2), 419–435.

    Google Scholar 

  21. Palm, R., Driankov, D., & Hellerndoorn, H. (1996). Model Based Fuzzy Control. New York: Springer-Verlag.

    Google Scholar 

  22. Passino, K., & Yurkovich, S. (1998). Fuzzy Control. Reading, MA: Addison Wesley.

    MATH  Google Scholar 

  23. Pedrycs, W. (1993). Fuzzy Control and Fuzzy Systems. Somerset, U.K.: Research Studies Press Ltd.

    Google Scholar 

  24. Wang, L. X. (1994). Adaptive Fuzzy Systems and Control: Design and Stability Analysis. Englewood Cliffs, NJ: Prentice-Hall.

    Google Scholar 

  25. Wang, L. X. (1997). A Course in Fuzzy Systems and Control. London, U.K.: Prentice-Hall.

    MATH  Google Scholar 

  26. Takagi, T., & Sugeno, M. (1985). “Fuzzy identification of systems and its applications to modeling and control,”. IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, SMC-15(1), 116–132.

    Google Scholar 

  27. Cao, S. G., Rees, N. W., & Feng, G. (1995). Analysis and design of fuzzy control systems using dynamic fuzzy global models. Fuzzy Sets and Systems, 75(1), 47–62.

    Google Scholar 

  28. Cao, S. G., Rees, N. W., & Feng, G. (1997). Analysis and design for a class of complex control systems Part I: Fuzzy modelling and identification. Automatica, 33(6), 1017–1028.

    Google Scholar 

  29. Cao, S. G., Rees, N. W., & Feng, G. (1997). Analysis and design for a class of complex control systems Part II: Fuzzy controller design. Automatica, 33(6), 1029–1039.

    Google Scholar 

  30. Wang, L. X., & Mendel, J. M. (1992). Fuzzy basis functions, universal approximation, and orthogonal least squares learning. IEEE Transactions on Neural Networks, 3(5), 807–814.

    Google Scholar 

  31. Wang, L. (1998). “Universal approximation by hierarchical fuzzy systems,”. Fuzzy Sets and Systems, 93(2), 223–230.

    Google Scholar 

  32. Wang, G. (1998). Fuzzy continuous input-output controllers are universal approximators. Fuzzy Sets and Systems, 97(1), 95–99.

    Google Scholar 

  33. Zeng, X.-J., & Singh, M. G. (1994). “Approximation theory of fuzzy systems–SISO case,”. IEEE Transactions on Fuzzy Systems, 2(2), 162–176.

    Google Scholar 

  34. Zeng, X.-J., & Singh, M. G. (1995). “Approximation theory of fuzzy systems–MIMO case,”. IEEE Transactions on Fuzzy Systems, 3(2), 219–235.

    Google Scholar 

  35. Zeng, X.-J., & Keane, J. A. (2005). Approximation capabilities of hierarchical fuzzy systems. IEEE Transactions on Fuzzy Systems, 13(5), 659–672.

    Google Scholar 

  36. Zeng, X.-J., & Singh, M. G. (1996). Approximation properties of fuzzy systems generated by the min inference. IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, 26(1), 187–193.

    Google Scholar 

  37. Zeng, X.-J., & Singh, M. G. (1996). A relationship between membership functions and approximation accuracy in fuzzy systems. IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, 26(1), 176–180.

    Google Scholar 

  38. Zeng, X.-J., & Singh, M. G. (1996). Approximation accuracy analysis of fuzzy systems as function approximators. IEEE Transactions on Fuzzy Systems, 4(1), 44–63.

    Google Scholar 

  39. Zeng, X.-J., Keane, J. A., & Wang, D. (2006). “Fuzzy systems approach to approximation and stabilization of conventional affine nonlinear systems,”. Proceedings of the 2006 IEEE International Conference on Fuzzy Systems (pp. 277–284) Vancouver, BC, Canada.

    Google Scholar 

  40. Fantuzzi, C., & Rovatti, R. (1996). “On the approximation capabilities of the homogenerous Takagi-Sugeno model,”. Proceedings of the 1996 IEEE International Conference on Fuzzy Systems (pp. 1067–1072) New Orleans, LA.

    Google Scholar 

  41. Zeng, K., Zhang, N. Y., & Xu, W. L. (2000). A comparative study on sufficient conditions for Takagi-Sugeno fuzzy systems as universal approximators. IEEE Transactions on Fuzzy Systems, 8(6), 773–780.

    Google Scholar 

  42. Ying, H., Ding, Y., Li, S., & Shao, S. (1999). Comparison of necessary conditions for typical Takagi-Sugeno and Mamdani fuzzy systems as universal approximators. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 29(5), 508–514.

    Google Scholar 

  43. Chen, W. (2001). Sufficient conditions on fuzzy logic controllers as universal approximators. IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, 31(2), 270–274.

    Google Scholar 

  44. Feng, G. (2010). Analysis and Synthesis of Fuzzy Control Systems: A Model-Based Approach. Boca Raton, FL: CRC Press.

    Book  MATH  Google Scholar 

  45. Tanaka, K., & Wang, H. O. (2001). Fuzzy Control Systems Design And Analysis: A LMI Approach. New York: Wiley.

    Book  Google Scholar 

  46. Cao, S. G., Rees, N. W., & Feng, G. (2001). Universal fuzzy controllers for a class of nonlinear systems. Fuzzy Sets and Systems, 122(1), 117–123.

    Google Scholar 

  47. Cao, S. G., Rees, N. W., & Feng, G. (2001). Mamdani-type fuzzy controllers are universal fuzzy controllers. Fuzzy Sets and Systems, 123(3), 359–367.

    Google Scholar 

  48. Teixeira, M. C. M., & Zak, S. H. (1999). Stabilizing controller design for uncertain nonlinear systems using fuzzy models. IEEE Transactions on Fuzzy Systems, 7(2), 133–142.

    Google Scholar 

  49. Kim, W. C., Ahn, S. C., & Kwon, W. H. (1995). Stability analysis and stabilzation of fuzzy state space models. Fuzzy Sets and Systems, 71(1), 131–142.

    Google Scholar 

  50. Kim, E., & Lee, H. (2000). New approach to relaxed quadratic stability condition of fuzzy control systems. IEEE Transactions on Fuzzy Systems, 8(5), 523–534.

    Google Scholar 

  51. Cao, Y.-Y., & Frank, P. M. (2000). Analysis and synthesis of nonlinear time-delay systems via fuzzy control approach. IEEE Transactions on Fuzzy Systems, 8(2), 200–211.

    Google Scholar 

  52. Cao, Y.-Y., & Frank, P. M. (2001). Stability analysis and synthesis of nonlinear time-delay systems via linear Takagi-Sugeno fuzzy systems. Fuzzy Sets and Systems, 124(2), 213–229.

    Google Scholar 

  53. Tanaka, K., & Sugeno, M. (1992). Stability analysis and design of fuzzy control systems. Fuzzy Sets and Systems, 6(2), 135–156.

    Google Scholar 

  54. Wang, H. O., Tanaka, K., & Griffin, M. F. (1996). An approach to fuzzy control of nonlinear systems: Stability and design issues. IEEE Transactions on Fuzzy Systems, 4(1), 14–23.

    Google Scholar 

  55. Hwang, G. C., & Lin, S. C. (1992). A stability approach to fuzzy control design for nonlinear systems. Fuzzy Sets and Systems, 48(3), 279–287.

    Google Scholar 

  56. Yoneyama, J. (2007). New robust stability conditions and design of robust stabilizing controllers for Takagi-Sugeno fuzzy time-delay systems. IEEE Transactions on Fuzzy Systems, 15(5), 828–839.

    Google Scholar 

  57. Lam, H. K., & Leung, F. H. (2007). Sampled-Data fuzzy controller for time-delay nonlinear systems: fuzzy-model-based LMI approach. IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, 37(3), 617–629.

    Google Scholar 

  58. Narimani, M., & Lam, H. K. (2009). Relaxed LMI-Based stability conditions for Takagi-Sugeno fuzzy control systems using regional-membership-function-shape-dependent analysis approach. IEEE Transactions on Fuzzy Systems, 17(5), 1221–1228.

    Google Scholar 

  59. Ohtake, H., Tanaka, K., & Wang, H. O. (2009). Fuzzy model-based servo and model following control for nonlinear systems. IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, 39(6), 1634–1639.

    Google Scholar 

  60. Teixeira, M. C. M., Assuncao, E., & Avellar, R. G. (2003). On relaxed LMI-based designs for fuzzy regulators and fuzzy observers. IEEE Transactions on Fuzzy Systems, 11(5), 613–623.

    Google Scholar 

  61. Cao, S. G., Rees, N. W., & Feng, G. (1996). Stability analysis of fuzzy control systems. IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, 26(1), 201–204.

    Google Scholar 

  62. Cao, S. G., Rees, N. W., & Feng, G. (1999). Analysis and design of fuzzy control systems using dynamic fuzzy-state space models. IEEE Transactions on Fuzzy Systems, 7(2), 192–200.

    Google Scholar 

  63. Feng, G. (2001). Approaches to quadratic stabilization of uncertain fuzzy dynamic systems. IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Applications, 48(6), 760–769.

    Google Scholar 

  64. Feng, G., & Ma, J. (2001). Quadratic stabilization of uncertain discrete-time fuzzy dynamic systems. IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Applications, 48(11), 1337–1343.

    Google Scholar 

  65. Feng, G. (2004). Stability analysis of discrete time fuzzy dynamic systems based on piecewise Lyapunov functions. IEEE Transactions on Fuzzy Systems, 12(1), 22–28.

    Google Scholar 

  66. Feng, G. (2004). \({{H}}_{\infty }\) controller design of fuzzy dynamic systems based on piecewise Lyapunov functions. IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, 34(1), 283–292.

    Google Scholar 

  67. Feng, G., Chen, C. L., Sun, D., & Guan, X. P. (2005). \({{H}}_{\infty }\) controller synthesis of fuzzy dynamic systems based on piecewise Lyapunov functions and bilinear matrix inequalities. IEEE Transactions on Fuzzy Systems, 13(1), 94–103.

    Google Scholar 

  68. Wang, L., & Feng, G. (2004). Piecewise \({{H}}_{\infty }\) controller design of discrete time fuzzy systems. IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, 34(1), 682–686.

    Google Scholar 

  69. Guerra, T. M., & Vermeiren, L. (2004). “LMI-based relaxed nonquadratic stabilization conditions for nonlinear systems in the Takagi-Sugeno’s form,”. Automatica, 40(5), pp. 823–829.

    Google Scholar 

  70. Kruszewski, A., & Guerra, T. M. (2005). “New approach for the stabilization of discrete-time Takagi-Sugeno fuzzy models,”. Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference 2005 (pp. 3255–3260) Seville, Spain.

    Google Scholar 

  71. Kruszewski, A., Guerra, T. M., & Labiod, S. (2007). “Stabilization of Takagi-Sugeno discrete models: towards an unification of the results,”. Proceedings of the 2007 IEEE International Conference on Fuzzy Systems (pp. 1–6) London, UK.

    Google Scholar 

  72. Kruszewski, A., Wang, R., & Guerra, T. M. (2008). Nonquadratic stabilization conditions for a class of uncertain nonlinear discrete time TS fuzzy models: a new approach. IEEE Transactions on Automatic Control, 53(2), 606–611.

    Google Scholar 

  73. Zhou, S. S., Feng, G., Lam, J., & Xu, S. Y. (2005). Robust \({{H}}_{\infty }\) control for discrete fuzzy systems via basis-dependent Lyapunov functions. Information Science, 174(3–4), 197–217.

    Google Scholar 

  74. Wu, L., Su, X., Shi, P., & Qiu, J. (2011). A new approach to stability analysis and stabilization of discrete-time T-S fuzzy time-varying delay systems. IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, 41(1), 273–286.

    Google Scholar 

  75. Ma, J., & Feng, G. (2003). An approach to \({{H}}_{\infty }\) control of fuzzy dynamic systems. Fuzzy Sets and Systems, 137(3), 367–386.

    Google Scholar 

  76. Choi, D. J., & Park, P. (2003). \({\cal {H}}_{\infty }\) state-feedback controller design for discrete-time fuzzy systems using fuzzy weighting-dependent Lyapunov functions. IEEE Transactions on Fuzzy Systems, 11(2), 271–278.

    Google Scholar 

  77. Feng, G. (2006). A survey on analysis and design of model-based fuzzy control systems. IEEE Transactions on Fuzzy Systems, 14(5), 676–697.

    Google Scholar 

  78. Sugeno, M. (1999). On stability of fuzzy systems expressed by fuzzy rules with singleton consequents. IEEE Transactions on Fuzzy Systems, 7(2), 201–224.

    Google Scholar 

  79. Lam, H. K., Leung, F. H. F., & Tam, P. K. S. (2002). A linear matrix inequality approach for the control of uncertain fuzzy systems. IEEE Control Systems Magzine, 22(4), 20–25.

    Google Scholar 

  80. Lin, C., Wang, Q., Lee, T. H., & He, Y. (2008). Design of observer-based \({{H}}_{\infty }\) control for fuzzy time-delay systems. IEEE Transactions on Fuzzy Systems, 16(2), 534–543.

    Google Scholar 

  81. Chen, C. L., & Chang, M. H. (1998). Optimal design of fuzzy sliding mode control: A comparative study. Fuzzy Sets and Systems, 93(1), 37–48.

    Google Scholar 

  82. Chen, C. S., & Chen, W. L. (1998). “Analysis and design of a stable fuzzy control system,”. Fuzzy Sets and Systems, 96(1), 21–35.

    Google Scholar 

  83. Feng, M., & Harris, C. J. (2001). “Piecewise Lyapunov stability conditions of fuzzy systems,”. IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, 31(2), 259–262.

    Google Scholar 

  84. Feng, G., Cao, S. G., Rees, N. W., & Chak, C. K. (1997). Design of fuzzy control systems with guaranteed stability. Fuzzy Sets and Systems, 85(1), 1–10.

    Google Scholar 

  85. Feng, G. (2003). Controller synthesis of fuzzy dynamic systems based on piecewise Lyapunov functions. IEEE Transactions on Fuzzy Systems, 11(10), 605–612.

    Google Scholar 

  86. Gao, Q., Zeng, X.-J., Feng, G., Wang, Y., & Qiu, J. (2012). T-S-Fuzzy-Model-Based approximation and controller design for general nonlinear systems. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 42(4), 1131–1142.

    Google Scholar 

  87. Feng, G., & Sun, D. (2002). Generalized \({{\fancyscript {H}}_{\infty }}\) controller synthesis of fuzzy dynamic systems based on piecewise Lyapunov funcitons. IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Applications, 49(12), 1843–1850.

    Google Scholar 

  88. Johansson, M., Rantzer, A., & Arzen, K. E. (1999). Piecewise quadratic stability of fuzzy systems. IEEE Transactions on Fuzzy Systems, 7(6), 713–722.

    Google Scholar 

  89. Qiu, J., Feng, G., & Yang, J. (2009). A new design of delay-dependent robust \({{\fancyscript {H}}_{\infty }}\) filtering for discrete-time T-S fuzzy systems with time-varying delay. IEEE Transactions on Fuzzy Systems, 17(5), 1044–1058.

    Google Scholar 

  90. Qiu, J., Feng, G., & Gao, H. (2010). Fuzzy-model-based piecewise \({{\fancyscript {H}}_{\infty }}\) static output feedback controller design for networked nonlinear systems. IEEE Transactions on Fuzzy Systems, 18(5), 919–934.

    Google Scholar 

  91. Qiu, J., Feng, G., & Gao, H. (2011). Non-synchronized state estimation of multi-channel networked nonlinear systems with multiple pack-et dropouts via T-S fuzzy affine dynamic models. IEEE Transactions on Fuzzy Systems, 19(1), 75–90.

    Google Scholar 

  92. Qiu, J., Feng, G., & Gao, H. (2011). Asynchronous output feedback control of networked nonlinear systems with multiple packet dropouts: T-S fuzzy affine model based approach. IEEE Transactions on Fuzzy Systems, 19(6), 1014–1030.

    Google Scholar 

  93. Qiu, J., Feng, G., & Gao, H. (2012). Observer-based piecewise affine output feedback controller synthesis of continuous-time T-S fuzzy affine dynamic systems using quantized measurements. IEEE Transactions on Fuzzy Systems, 20(6), 1046–1062.

    Google Scholar 

  94. Zhou, S., & Li, T. (2005). Robust stabilization for delayed discrete-time fuzzy systems via basis-dependent Lyapunov-Krasovskii functional. Fuzzy Sets and Systems, 151(1), 139–153.

    Google Scholar 

  95. Zhou, S., Lam, J., & Xue, A. (2007). \({\cal H}_{\infty }\) filtering of discrete-time fuzzy systems via basis-dependent Lyapunov function approach. Fuzzy Sets and Systems, 158(2), 180–193.

    Google Scholar 

  96. Sala, A., Guerra, T. M., & Babuska, R. (2005). Perspectives of fuzzy systems and control. Fuzzy Sets and Systems, 156, 432–444.

    Article  MathSciNet  MATH  Google Scholar 

  97. Dong, J., Wang, Y., & Yang, G. (2009). Control synthesis of continuous-time T-S fuzzy systems with local nonlinear models. IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, 39(5), 1245–1258.

    Google Scholar 

  98. Márquez, J. M. A. (2009). A. J. B. \(\tilde{{\rm P}}\)ina, and M. E. G. Arias, “A general and formal methodology to design stable nonlinear fuzzy control systems,”. IEEE Transactions on Fuzzy Systems, 17(5), 1081–1091.

    Google Scholar 

  99. Song, C. H., Ye, J. C., Liu, D. R., & Kang, Q. (2009). Generalized receding horizon control of fuzzy systems based on numerical optimization algorithm. IEEE Transactions on Fuzzy Systems, 17(6), 1336–1352.

    Google Scholar 

  100. Xu, C. Y., & Shin, Y. C. (2008). A fuzzy inverse model construction method for general monotonic multi-input-single-output (MISO) systems. IEEE Transactions on Fuzzy Systems, 16(5), 1216–1231.

    Google Scholar 

  101. Chen, S. H., & Juang, J. C. (2008). “Improving nonlinear T-S fuzzy controller design using sum of squares technique,”. Proceedings of the 2008 SICE Annual Conference (pp. 1845–1850)Japan.

    Google Scholar 

  102. Mao, X. (2007). Stochastic Differential Equations and Applications (2nd ed.). Chichester, UK: Horwood Publication.

    MATH  Google Scholar 

  103. Liu, S., Jiang, Z., & Zhang, J. (2008). Global output-feedback stabilization for a class of stochastic non-minimum-phase nonlinear systems. Automatica, 44(8), 1944–1957.

    Google Scholar 

  104. Berman, N., & Shaked, U. (2004). \({\cal H}_{\infty }\) like control for nonlinear stochastic systems. Systems and Control Letters, 55(3), 123–135.

    Google Scholar 

  105. Xie, X., & Tan, J. (2009). Adaptive state-feedback stabilization of high-order stochastic systems with nonlinear parameterization. Automatica, 45(1), 126–133.

    Google Scholar 

  106. Li, W., Jing, Y., & Zhang, S. (2011). Adaptive state-feedback stabilization for a large class of high-order stochastic nonlinear systems. Automatica, 47(4), 819–828.

    Google Scholar 

  107. Hu, L., & Mao, X. (2008). Almost sure exponential stabilisation of stochastic systems by state-feedback control. Automatica, 44(2), 465–471.

    Google Scholar 

  108. Xu, S., & Chen, T. (2002). Robust \({\cal H}_{\infty }\) control for uncertain stochastic system with time delay. IEEE Transactions on Automatic Control, 47(12), 2089–2094.

    Google Scholar 

  109. Zhou, S., Ren, W., & Lam, J. (2011). Stabilization for T-S model based uncertain stochastic systems. Information Sciences, 181(4), 779–791.

    Google Scholar 

  110. Zhang, B., Xu, S., Zong, G., & Zou, Y. (2007). Delay-dependent stabilization for stochastic fuzzy systems with time delays. Fuzzy Sets and Systems, 158(20), 2238–2250.

    Google Scholar 

  111. Chen, B.-S., Lee, B.-K., & Guo, L.-B. (2004). Optimal tracking design for stochastic fuzzy systems. IEEE Transaction on Fuzzy Systems, 11(6), 796–813.

    Google Scholar 

  112. Chang, W. J., Ku, C. C., & Huang, P. H. (2010). Robust fuzzy control for uncertain stochastic time-delay Takagi-Sugeno fuzzy models for achieving passivity. Fuzzy Sets and Systems, 161(15), 2012–2032.

    Google Scholar 

  113. Zhang, H., Wang, Y., & Liu, D. (2008). Delay-Dependent guaranteed cost control for uncertain stochastic fuzzy systems with multiple time delays. IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, 38(1), 126–140.

    Google Scholar 

  114. Liang, J., Wang, Z., & Liu, X. (2010). On passivity and passification of stochastic fuzzy systems with delays: the discrete-time case. IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, 40(3), 964–969.

    Google Scholar 

  115. Hu, L., & Yang, A. (2009). Fuzzy-model-based control of nonlinear stochastic systems with time-delay. Nonlinear Analysis: Theory, Methods & Applications, 71(12), e2855–e2865.

    Google Scholar 

  116. Wang, Z. D., Ho, D. W. C., & Liu, X. H. (2004). A note on the robust stability of uncertain stochastic fuzzy systems with time-delays. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 34(4), 570–576.

    Google Scholar 

  117. Liu, M., Cao, X., & Shi, P. (2013). Fault estimation and tolerant control for fuzzy stochastic systems. IEEE Transaction on Fuzzy Systems, 21(2), 221–229.

    Google Scholar 

  118. Wu, L., & Zheng, W. X. (2009). \({\cal {L}}_{2}-{\cal {L}}_{\infty }\) control of nonlinear fuzzy \(It\hat{o}\) stochastic delay systems via dynamic output feedback. IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, 39(5), 1308–1315.

    Article  MathSciNet  Google Scholar 

  119. Su, X., Wu, L., Shi, P., & Song, Y. D. (2012). \({\cal H}_{\infty }\) model reduction of Takagi-Sugeno Fuzzy Stochastic Systems. IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, 42(6), 1574–1585.

    Google Scholar 

  120. Liu, Z., & Li, H.-X. (2005). A probabilistic fuzzy logic system for modeling and control. IEEE Transaction on Fuzzy Systems, 13(6), 848–859.

    Google Scholar 

  121. Z. Liu and H.X. Li, (2005).“A probabilistic fuzzy logic system for uncertainty modeling,” Proceedings of the 2010 IEEE International Conference on Systems Man and Cybernetics (SMC), (pp. 3853–3858).

    Google Scholar 

  122. Li, H.-X., & Liu, Z. (2008). A Probabilistic Neural-Fuzzy Learning System for Stochastic Modeling. IEEE Transaction on Fuzzy Systems, 16(4), 898–908.

    Google Scholar 

  123. Meghdadi, A. H. & Akbarzadeh, M. R. (2001). “Probablistic fuzzy logic and probabilistic fuzzy systems,”. Proceedings of the 2001 IEEE International Conference on Fuzzy Systems (pp. 1127–1130) Melbourne, Australia.

    Google Scholar 

  124. Song, H., Miao, C., Shen, Z., Roel, W., D’Hondt, M., & Francky, C. (2011). A probabilistic fuzzy approach to modeling nonlinear systems. Neurocomputing, 74(6), 1008–1025.

    Google Scholar 

  125. Zhang, G., & Li, H. X. (2012). An efficient configuration for probabilistic fuzzy logic system. IEEE Transaction on Fuzzy Systems, 20(5), 898–909.

    Google Scholar 

  126. Liu, Z., & Li, H. X. (2009). “Probabilistic fuzzy logic system: A tool to process stochastic and imprecise information,”. Proceedings of the 2009 IEEE International Conference on Fuzzy Systems (pp. 848–853). Jeju Island, Korea.

    Google Scholar 

  127. Chen, S., & Chen, C. (Jun. 2012). Probabilistic fuzzy system for uncertain localization and map building of mobile robots. IEEE Transaction on Instrumentation and Measurement, 61(6), 1564–1560.

    Google Scholar 

  128. Chen, W. H., & Chen, B. S. (2013). Robust stabilization design for nonlinear stochastic system with Poisson noise via fuzzy interpolation method. Fuzzy Sets and Systems, 217(16), 41–61.

    Google Scholar 

  129. Lee, H., & Tomizuka, M. (2000). Robust adaptive control using a universal approximator for SISO nonlinear systems. IEEE Transactions on Fuzzy Systems, 8(1), 95–106.

    Google Scholar 

  130. Ying, H. (1998). General SISO Takagi-Sugeno fuzzy systems with linear rule consequent are universal approximators. IEEE Transactions on Fuzzy Systems, 6(4), 582–587.

    Google Scholar 

  131. Chen, B., Liu, X. P., Ge, S. S., & Lin, C. (2012). Adaptive fuzzy control of a class of nonlinear systems by fuzzy approximation approach. IEEE Transactions on Fuzzy Systems, 20(6), 1012–1021.

    Google Scholar 

  132. Utkin, V. I. (1977). “Variable structure systems with sliding modes,”. IEEE Transactions on Automatic Control, AC-22(2), 212–222.

    Google Scholar 

  133. Utkin, V. I., & Shi, J. (1996). "Integral sliding mode in systems operating under uncertainty conditions," presented at the 35th Conf. Kobe, Japan: Decis. Control. Dec.

    Google Scholar 

  134. Hung, J. Y., Gao, W., & Hung, J. C. (1993). Variable structure control: a survey. IEEE Transactions on Industrial Electronics, 40(1), 2–22.

    Google Scholar 

  135. Gao, W., & Hung, J. C. (1993). Variable structure control of nonlinear systems: a new approach. IEEE Transactions on Industrial Electronics, 40(1), 45–55.

    Google Scholar 

  136. Yu, X., Man, Z., & Wu, B. (1998). “Design of fuzzy sliding-mode control systems,”. Fuzzy Sets and Systems, 95(3), 295–306.

    Google Scholar 

  137. Zhang, J., Shi, P., & Xia, Y. (2010). Robust adaptive sliding-mode control for fuzzy systems with mismatched uncertainties. IEEE Transactions on Fuzzy Systems, 18(4), 700–711.

    Google Scholar 

  138. Lin, C., Wang, Q., & Lee, T. H. (2005). Stabilization of uncertain fuzzy time-delay systems via variable structure control approach. IEEE Transactions on Fuzzy Systems, 13(6), 787–798.

    Google Scholar 

  139. Choi, H. H. (2010). Robust stabilization of uncertain fuzzy-time-delay systems using sliding-mode-control approach. IEEE Transactions on Fuzzy Systems, 18(5), 979–984.

    Google Scholar 

  140. Choi, H. H. (2008). Robust stabilization of uncertain fuzzy systems using variable structure system approach. IEEE Transactions on Fuzzy Systems, 16(3), 715–724.

    Google Scholar 

  141. Xi, Z., Feng, G., & Hesketh, T. (2011). Piecewise sliding-mode control for T-S fuzzy systems. IEEE Transactions on Fuzzy Systems, 19(4), 707–716.

    Google Scholar 

  142. Xi, Z., Feng, G., & Hwsketh, T. (2011). Piecewise integral sliding-mode control for T-S fuzzy systems. IEEE Transactions on Fuzzy Systems, 19(1), 65–74.

    Google Scholar 

  143. Ho, D. W. C., & Niu, Y. (2007). Robust fuzzy design for nonlinear uncertain stochastic systems via sliding-mode control. IEEE Transactions on Fuzzy Systems, 15(3), 350–358.

    Google Scholar 

  144. Cao, W., & Xu, J. (2004). Nonlinear integral-type sliding surface for both matched and unmantched uncertain systems. IEEE Transactions on Automatic Control, 49(8), 1355–1360.

    Google Scholar 

  145. Chang, J. (2009). Dynamic output integral sliding-mode control with disturbance attenuation. IEEE Transactions on Automatic Control, 54(11), 2653–2658.

    Google Scholar 

  146. Choi, H. H. (2007). LMI-based sliding surface design for integral sliding mode control of mismatched uncertain systems. IEEE Transactions on Automatic Control, 52(4), 736–742.

    Google Scholar 

  147. Niu, Y., Ho, D. W. C., & Wang, X. (2008). Robust \({{\fancyscript {H}}_{\infty }}\) control for nonlinear stochastic systems: a sliding-mode approach. IEEE Transactions on Automatic Control, 53(7), 1695–1701.

    Google Scholar 

  148. Y. Niu, D.W.C. Ho, and J. Lam, “Robust integral sliding mode control for uncertain stochastic systems with time-varying delay,”. Automatica, 41(5), 873–880.

    Google Scholar 

  149. Rubagotti, M., & Estrada, A. (2011). F. Casta\(\tilde{\text{n}}\)os, and L. Fridman, "Integral sliding mode control for nonlinear systems with matched and unmantched perturbations,". IEEE Transactions on Automatic Control, 56(11), 2699–2704.

    Google Scholar 

  150. Glower, S., & Munighan, J. (1997). Designing fuzzy controllers from a variable structures standpoint. IEEE Transactions on Fuzzy Systems, 5(1), 138–144.

    Google Scholar 

  151. Hwang, Y. R., & Tomizuka, M. (1994). Fuzzy smoothing algorithms for variable structure systems. IEEE Transactions on Fuzzy Systems, 2(4), 277–284.

    Google Scholar 

  152. Su, J. P., Chen, T. M., & Wang, C. C. (2001). “Adaptive fuzzy sliding mode control with GA-based reaching laws”. Fuzzy Sets and Systems, 120(1), 145–158.

    Google Scholar 

  153. Lin, W. S., & Tsai, C. H. (2001). Self-organizing fuzzy control of multi-variable systems using learning vector quantization network. Fuzzy Sets and Systems, 124(2), 197–212.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Gao .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Gao, Q. (2017). Introduction. In: Universal Fuzzy Controllers for Non-affine Nonlinear Systems. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-10-1974-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-1974-6_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-1973-9

  • Online ISBN: 978-981-10-1974-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics