Skip to main content

Lignin Degrading Fungal Enzymes

  • Chapter
  • First Online:
Book cover Production of Biofuels and Chemicals from Lignin

Part of the book series: Biofuels and Biorefineries ((BIOBIO))

Abstract

Lignin is a complex heterophenolic biopolymer present in plant cell walls. It supports plants growth by providing structural integrity, impermeability, protection against pathogenic infection and pest damage. Being the second most abundant polymer on the earth, it plays a major role in carbon recycling. Increases in greenhouse gas emission and decreases in fuel reserves have increased interest all over the world for the production of biofuels from plant biomass. Because of its complex structure, lignin has become one of the major hurdles for biofuels production. Research has been conducted on methods to separate lignin from lignocellulosic biomass by employing chemical, physical or mechanical methods. However, these methods tend to be expensive and require much energy and also pose risks to the environment. The polyphenolic structure of lignin has attracted interest for the production of renewable and commercially valuable platform chemicals, thus studies have been conducted on its degradation by enzymes. This chapter summarizes recent advances in lignin degrading enzymes (Lignin Oxidizing and Lignin Degrading Auxiliary enzymes) produced by wood degrading fungi and bacteria. Structural and functional aspects of lignin degrading and their auxiliary enzymes are covered with a short note being made on genomic studies of lignin degrading fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fengel D, Wegener G. Wood: chemistry, ultrastructure, reactions. Berlin: Walter de Gruyter; 1984. 613:1960–1982.

    Google Scholar 

  2. Whetten R, Sederoff R. Lignin biosynthesis. Plant Cell. 1995;7(7):1001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Boerjan W, Ralph J, Baucher M. Lignin biosynthesis. Annu Rev Plant Biol. 2003;54(1):519–46.

    Article  CAS  PubMed  Google Scholar 

  4. Ten E, Ling C, Wang Y, Srivastava A, Dempere LA, Vermerris W. Lignin nanotubes as vehicles for gene delivery into human cells. Biomacromolecules. 2013;15(1):327–38.

    Article  PubMed  CAS  Google Scholar 

  5. Freudenberg K, Neish AC. Constitution and biosynthesis of lignin. Berlin/Heidelberg: Springer; 1968.

    Book  Google Scholar 

  6. Higuchi T. Lignin biochemistry: biosynthesis and biodegradation. Wood Sci Technol. 1990;24(1):23–63.

    Article  CAS  Google Scholar 

  7. Breznak JA, Brune A. Role of microorganisms in the digestion of lignocellulose by termites. Annu Rev Entomol. 1994;39(1):453–87.

    Article  CAS  Google Scholar 

  8. Pandey MP, Kim CS. Lignin depolymerization and conversion: a review of thermochemical methods. Chem Eng Technol. 2011;34(1):29–41.

    Article  CAS  Google Scholar 

  9. Wong DW. Structure and action mechanism of ligninolytic enzymes. Appl Biochem Biotechnol. 2009;157(2):174–209.

    Article  CAS  PubMed  Google Scholar 

  10. Hatakka A. Biodegradation of lignin. Biopolymers Online. 2005.

    Google Scholar 

  11. Arantes V, Goodell B. Current understanding of brown-rot fungal biodegradation mechanisms a review. In: Deterioration and protection of sustainable biomaterials, American chemical society symposium series. Washington, DC: American Chemical Society; 2014. p. 1–21.

    Google Scholar 

  12. Alexopoulos C, Mims C, Blackwell M. Introductory mycology. 4th ed. New York: Wiley; 1996, 869pp.

    Google Scholar 

  13. Leonowicz A, Matuszewska A, Luterek J, Ziegenhagen D, Wojtaś-Wasilewska M, Cho N-S, Hofrichter M, Rogalski J. Biodegradation of lignin by white rot fungi. Fungal Genet Biol. 1999;27(2):175–85.

    Article  CAS  PubMed  Google Scholar 

  14. Manavalan T, Manavalan A, Heese K. Characterization of lignocellulolytic enzymes from white-rot fungi. Curr Microbiol. 2015;70(4):485–98.

    Article  CAS  PubMed  Google Scholar 

  15. Kameshwar AKS, Qin W. Recent developments in using advanced sequencing technologies for the genomic studies of lignin and cellulose degrading microorganisms. Int J Biol Sci. 2016;12(2):156–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res. 2009;37 suppl 1:D233–8.

    Article  CAS  PubMed  Google Scholar 

  17. Henrissat B. A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J. 1991;280:309–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Levasseur A, Piumi F, Coutinho PM, Rancurel C, Asther M, Delattre M, Henrissat B, Pontarotti P, Asther M, Record E. FOLy: an integrated database for the classification and functional annotation of fungal oxidoreductases potentially involved in the degradation of lignin and related aromatic compounds. Fungal Genet Biol. 2008;45(5):638–45.

    Article  CAS  PubMed  Google Scholar 

  19. Blodig W, Smith AT, Doyle WA, Piontek K. Crystal structures of pristine and oxidatively processed lignin peroxidase expressed in Escherichia coli and of the W171F variant that eliminates the redox active tryptophan 171. Implications for the reaction mechanism. J Mol Biol. 2001;305(4):851–61.

    Article  CAS  PubMed  Google Scholar 

  20. Sundaramoorthy M, Youngs HL, Gold MH, Poulos TL. High-resolution crystal structure of manganese peroxidase: substrate and inhibitor complexes. Biochemistry. 2005;44(17):6463–70.

    Article  CAS  PubMed  Google Scholar 

  21. Hallberg BM, Henriksson G, Pettersson G, Divne C. Crystal structure of the flavoprotein domain of the extracellular flavocytochrome cellobiose dehydrogenase. J Mol Biol. 2002;315(3):421–34.

    Article  CAS  PubMed  Google Scholar 

  22. Dwivedi UN, Singh P, Pandey VP, Kumar A. Structure–function relationship among bacterial, fungal and plant laccases. J Mol Catal B Enzym. 2011;68(2):117–28.

    Article  CAS  Google Scholar 

  23. Yoshida H. LXIII.-chemistry of lacquer (Urushi). Part I. Communication from the chemical society of Tokio. J Chem Soc Trans. 1883;43(0):472–86. doi:10.1039/CT8834300472.

    Article  CAS  Google Scholar 

  24. Bertrand G. Sur la presence simultanee de la laccase et de la tyrosinase dans le suc de quelques champignons. CR Hebd Seances Acad Sci. 1896;123:463–5.

    CAS  Google Scholar 

  25. Heinzkill M, Messner K. The ligninolytic system of fungi. Fungal Biotechnol. 1997; 213–227.

    Google Scholar 

  26. Gianfreda L, Xu F, Bollag J-M. Laccases: a useful group of oxidoreductive enzymes. Bioremediation J. 1999;3(1):1–26.

    Article  CAS  Google Scholar 

  27. O’Malley DM, Whetten R, Bao W, Chen CL, Sederoff RR. The role of laccase in lignification. Plant J. 1993;4(5):751–7.

    Article  Google Scholar 

  28. Hatakka A. Lignin-modifying enzymes fungi: production and role. FEMS Microbiol Rev. 1994;13:125–35.

    Article  CAS  Google Scholar 

  29. Youn H-D, Hah YC, Kang S-O. Role of laccase in lignin degradation by white-rot fungi. FEMS Microbiol Lett. 1995;132(3):183–8.

    Article  CAS  Google Scholar 

  30. Thurston CF. The structure and function of fungal laccases. Microbiology. 1994;140(1):19–26.

    Article  CAS  Google Scholar 

  31. Leatham GF, Stahmann MA. Studies on the laccase of Lentinus edodes: specificity, localization and association with the development of fruiting bodies. J Gen Microbiol. 1981;125(1):147–57.

    CAS  Google Scholar 

  32. Ikegaya N, Goto M, Hayashi Y. Effect of phenolic compounds and urovides on the activities of extracellular enzyme during vegetative growth and fruit-body formation of Lentinus edodes. Transactions of the Mycological Society of Japan (Japan). 1993.

    Google Scholar 

  33. Worrall J, Chet I, Hüttermann A. Association of rhizomorph formation with laccase activity in Armillaria spp. J Gen Microbiol. 1986;132(9):2527–33.

    CAS  Google Scholar 

  34. Viterbo A, Staples RC, Yagen B, Mayer AM. Selective mode of action of cucurbitacin in the inhibition of laccase formation in Botrytis cinerea. Phytochemistry. 1994;35(5):1137–42.

    Article  CAS  Google Scholar 

  35. Piontek K, Antorini M, Choinowski T. Crystal structure of a laccase from the fungus Trametes versicolor at 1.90-Å resolution containing a full complement of coppers. J Biol Chem. 2002;277(40):37663–9.

    Article  CAS  PubMed  Google Scholar 

  36. Ducros V, Brzozowski AM, Wilson KS, Brown SH, Østergaard P, Schneider P, Yaver DS, Pedersen AH, Davies GJ. Crystal structure of the type-2 Cu depleted laccase from Coprinus cinereus at 2.2 Å resolution. Nat Struct Mol Biol. 1998;5(4):310–6.

    Article  CAS  Google Scholar 

  37. Hakulinen N, Kiiskinen L-L, Kruus K, Saloheimo M, Paananen A, Koivula A, Rouvinen J. Crystal structure of a laccase from Melanocarpus albomyces with an intact trinuclear copper site. Nat Struct Mol Biol. 2002;9(8):601–5.

    CAS  Google Scholar 

  38. Lyashenko AV, Zhukhlistova NE, Gabdoulkhakov AG, Zhukova YN, Voelter W, Zaitsev VN, Bento I, Stepanova EV, Kachalova GS, Koroleva OV. Purification, crystallization and preliminary X-ray study of the fungal laccase from Cerrena maxima. Acta Crystallogr Sect F: Struct Biol Cryst Commun. 2006;62(10):954–7.

    Article  CAS  Google Scholar 

  39. Kallio JP, Gasparetti C, Andberg M, Boer H, Koivula A, Kruus K, Rouvinen J, Hakulinen N. Crystal structure of an ascomycete fungal laccase from Thielavia arenaria–common structural features of asco‐laccases. FEBS J. 2011;278(13):2283–95.

    Article  CAS  PubMed  Google Scholar 

  40. Ferraroni M, Myasoedova N, Schmatchenko V, Leontievsky A, Golovleva L, Scozzafava A, Briganti F. Crystal structure of a blue laccase from Lentinus tigrinus: evidences for intermediates in the molecular oxygen reductive splitting by multicopper oxidases. BMC Struct Biol. 2007;7(1):60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Miki Y, Calviño FR, Pogni R, Giansanti S, Ruiz-Dueñas FJ, Martínez MJ, Basosi R, Romero A, Martínez AT. Crystallographic, kinetic, and spectroscopic study of the first ligninolytic peroxidase presenting a catalytic tyrosine. J Biol Chem. 2011;286(17):15525–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Edwards SL, Raag R, Wariishi H, Gold MH, Poulos TL. Crystal structure of lignin peroxidase. Proc Natl Acad Sci. 1993;90(2):750–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Piontek K, Smith A, Blodig W. Lignin peroxidase structure and function. Biochem Soc Trans. 2001;29(Pt 2):111–6.

    Article  CAS  PubMed  Google Scholar 

  44. Johjima T, Itoh N, Kabuto M, Tokimura F, Nakagawa T, Wariishi H, Tanaka H. Direct interaction of lignin and lignin peroxidase from Phanerochaete chrysosporium. Proc Natl Acad Sci. 1999;96(5):1989–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Blodig W, Smith AT, Winterhalter K, Piontek K. Evidence from spin-trapping for a transient radical on tryptophan residue 171 of lignin peroxidase. Arch Biochem Biophys. 1999;370(1):86–92.

    Article  CAS  PubMed  Google Scholar 

  46. Choinowski T, Blodig W, Winterhalter KH, Piontek K. The crystal structure of lignin peroxidase at 1.70 Å resolution reveals a hydroxy group on the C β of tryptophan 171: a novel radical site formed during the redox cycle. J Mol Biol. 1999;286(3):809–27.

    Article  CAS  PubMed  Google Scholar 

  47. Poulos T, Edwards S, Wariishi H, Gold M. Crystallographic refinement of lignin peroxidase at 2 A. J Biol Chem. 1993;268(6):4429–40.

    CAS  PubMed  Google Scholar 

  48. Piontek K, Glumoff T, Winterhalter K. Low pH crystal structure of glycosylated lignin peroxidase from Phanerochaete chrysosporium at 2.5 Å resolution. FEBS Lett. 1993;315(2):119–24.

    Article  CAS  PubMed  Google Scholar 

  49. Sundaramoorthy M, Kishi K, Gold MH, Poulos TL. The crystal structure of manganese peroxidase from Phanerochaete chrysosporium at 2.06-A resolution. J Biol Chem. 1994;269(52):32759–67.

    CAS  PubMed  Google Scholar 

  50. Sundaramoorthy M, Kishi K, Gold MH, Poulos TL. Crystal structures of substrate binding site mutants of manganese peroxidase. J Biol Chem. 1997;272(28):17574–80.

    Article  CAS  PubMed  Google Scholar 

  51. Sundaramoorthy M, Gold MH, Poulos TL. Ultrahigh (0.93 Å) resolution structure of manganese peroxidase from Phanerochaete chrysosporium: implications for the catalytic mechanism. J Inorg Biochem. 2010;104(6):683–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Pfister TD, Mirarefi AY, Gengenbach AJ, Zhao X, Danstrom C, Conatser N, Gao Y-G, Robinson H, Zukoski CF, Wang AH-J. Kinetic and crystallographic studies of a redesigned manganese-binding site in cytochrome c peroxidase. J Biol Inorg Chem. 2007;12(1):126–37.

    Article  CAS  PubMed  Google Scholar 

  53. Pogni R, Baratto MC, Teutloff C, Giansanti S, Ruiz-Dueñas FJ, Choinowski T, Piontek K, Martínez AT, Lendzian F, Basosi R. A Tryptophan Neutral Radical in the Oxidized State of Versatile Peroxidase from Pleurotus eryngii a combined multifrequency EPR and density functional theory study. J Biol Chem. 2006;281(14):9517–26.

    Article  CAS  PubMed  Google Scholar 

  54. Camarero S, Sarkar S, Ruiz-Dueñas FJ, Martınez MJ, Martınez ÁT. Description of a versatile peroxidase involved in the natural degradation of lignin that has both manganese peroxidase and lignin peroxidase substrate interaction sites. J Biol Chem. 1999;274(15):10324–30.

    Article  CAS  PubMed  Google Scholar 

  55. Ruiz-Dueñas FJ, Pogni R, Morales M, Giansanti S, Mate MJ, Romero A, Martínez MJ, Basosi R, Martínez AT. Protein radicals in fungal versatile peroxidase catalytic tryptophan radical in both compound I and compound II and studies on W164Y, W164H and W164S variants. J Biol Chem. 2009;284(12):7986–94.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Moreira PR, Duez C, Dehareng D, Antunes A, Almeida-Vara E, Frère J-M, Malcata FX, Duarte J. Molecular characterisation of a versatile peroxidase from a Bjerkandera strain. J Biotechnol. 2005;118(4):339–52.

    Article  CAS  PubMed  Google Scholar 

  57. Ruiz-Duenas FJ, Morales M, Mate MJ, Romero A, Martínez MJ, Smith AT, Martínez ÁT. Site-directed mutagenesis of the catalytic tryptophan environment in Pleurotus eryngii versatile peroxidase. Biochemistry. 2008;47(6):1685–95.

    Article  CAS  PubMed  Google Scholar 

  58. Henriksson G, Zhang L, Li J, Ljungquist P, Reitberger T, Pettersson G, Johansson G. Is cellobiose dehydrogenase from Phanerochaete chrysosporium a lignin degrading enzyme? Biochim Biophys Acta Protein Struct Mol Enzymol. 2000;1480(1):83–91.

    Article  CAS  Google Scholar 

  59. Ferri S, Sode K. Amino acid substitution at the substrate-binding subsite alters the specificity of the Phanerochaete chrysosporium cellobiose dehydrogenase. Biochem Biophys Res Commun. 2010;391(2):1246–50.

    Article  PubMed  CAS  Google Scholar 

  60. Hallberg BM, Henriksson G, Pettersson G, Vasella A, Divne C. Mechanism of the reductive half-reaction in cellobiose dehydrogenase. J Biol Chem. 2003;278(9):7160–6.

    Article  CAS  PubMed  Google Scholar 

  61. Hallberg BM, Bergfors T, Bäckbro K, Pettersson G, Henriksson G, Divne C. A new scaffold for binding haem in the cytochrome domain of the extracellular flavocytochrome cellobiose dehydrogenase. Structure. 2000;8(1):79–88.

    Article  CAS  PubMed  Google Scholar 

  62. Albrecht Messerschmidt WS, Huber R, Lang G, Kroneck PM. X-ray crystallographic characterisation of type-2-depleted ascorbate oxidase from zucchini. Eur J Biochem. 1992;209:597–602.

    Article  Google Scholar 

  63. Petersen LC, Degn H. Steady-state kinetics of laccase from Rhus vernicifera. Biochimica et Biophysica Acta (BBA)-Enzymology. 1978;526(1):85–92.

    Article  CAS  Google Scholar 

  64. Giardina P, Faraco V, Pezzella C, Piscitelli A, Vanhulle S, Sannia G. Laccases: a never-ending story. Cell Mol Life Sci. 2010;67(3):369–85.

    Article  CAS  PubMed  Google Scholar 

  65. Solomon EI, Sundaram UM, Machonkin TE. Multicopper oxidases and oxygenases. Chem Rev. 1996;96(7):2563–606.

    Article  CAS  PubMed  Google Scholar 

  66. Yaropolov A, Skorobogat’Ko O, Vartanov S, Varfolomeyev S. Laccase. Appl Biochem Biotechnol. 1994;49(3):257–80.

    Article  CAS  Google Scholar 

  67. Sakurai T. Anaerobic reactions of Rhus vernicifera laccase and its type-2 copper-depleted derivatives with hexacyanoferrate (II). Biochem J. 1992;284:681–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Höfer C, Schlosser D. Novel enzymatic oxidation of Mn 2+ to Mn 3+ catalyzed by a fungal laccase. FEBS Lett. 1999;451(2):186–90.

    Article  PubMed  Google Scholar 

  69. Schlosser D, Höfer C. Laccase-catalyzed oxidation of Mn2+ in the presence of natural Mn3+ chelators as a novel source of extracellular H2O2 production and its impact on manganese peroxidase. Appl Environ Microbiol. 2002;68(7):3514–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Bento I, Carrondo MA, Lindley PF. Reduction of dioxygen by enzymes containing copper. J Biol Inorg Chem. 2006;11(5):539–47.

    Article  CAS  PubMed  Google Scholar 

  71. Solomon EI, Baldwin MJ, Lowery MD. Electronic structures of active sites in copper proteins: contributions to reactivity. Chem Rev. 1992;92(4):521–42.

    Article  CAS  Google Scholar 

  72. Palmieri G, Cennamo G, Faraco V, Amoresano A, Sannia G, Giardina P. Atypical laccase isoenzymes from copper supplemented Pleurotus ostreatus cultures. Enzym Microb Technol. 2003;33(2):220–30.

    Article  CAS  Google Scholar 

  73. Leontievsky AA, Vares T, Lankinen P, Shergill JK, Pozdnyakova NN, Myasoedova NM, Kalkkinen N, Golovleva LA, Cammack R, Thurston CF. Blue and yellow laccases of ligninolytic fungi. FEMS Microbiol Lett. 1997;156(1):9–14.

    Article  CAS  PubMed  Google Scholar 

  74. Gutiérrez A, del Río JC, Ibarra D, Rencoret J, Romero J, Speranza M, Camarero S, Martínez MJ, Martínez ÁT. Enzymatic removal of free and conjugated sterols forming pitch deposits in environmentally sound bleaching of eucalypt paper pulp. Environ Sci Technol. 2006;40(10):3416–22.

    Article  PubMed  CAS  Google Scholar 

  75. Mikolasch A, Schauer F. Fungal laccases as tools for the synthesis of new hybrid molecules and biomaterials. Appl Microbiol Biotechnol. 2009;82(4):605–24.

    Article  CAS  PubMed  Google Scholar 

  76. Claus H. Laccases: structure, reactions, distribution. Micron. 2004;35(1):93–6.

    Article  CAS  PubMed  Google Scholar 

  77. Kawano T. Roles of the reactive oxygen species-generating peroxidase reactions in plant defense and growth induction. Plant Cell Rep. 2003;21(9):829–37.

    CAS  PubMed  Google Scholar 

  78. Bansal N, Kanwar SS. Peroxidase (s) in environment protection. Sci World J. 2013;2013:1–9.

    Article  CAS  Google Scholar 

  79. Perez-Boada M, Ruiz-Duenas FJ, Pogni R, Basosi R, Choinowski T, Martínez MJ, Piontek K, Martínez AT. Versatile peroxidase oxidation of high redox potential aromatic compounds: site-directed mutagenesis, spectroscopic and crystallographic investigation of three long-range electron transfer pathways. J Mol Biol. 2005;354(2):385–402.

    Article  CAS  PubMed  Google Scholar 

  80. Martınez AT. Molecular biology and structure-function of lignin-degrading heme peroxidases. Enzym Microb Technol. 2002;30(4):425–44.

    Article  Google Scholar 

  81. Smith AT, Veitch NC. Substrate binding and catalysis in heme peroxidases. Curr Opin Chem Biol. 1998;2(2):269–78.

    Article  CAS  PubMed  Google Scholar 

  82. Banci L. Structural properties of peroxidases. J Biotechnol. 1997;53(2):253–63.

    Article  CAS  PubMed  Google Scholar 

  83. Gold M, Youngs H, Gelpke M. Manganese peroxidase. Met Ions Biol Syst. 2000;37:559.

    CAS  PubMed  Google Scholar 

  84. Orth A, Denny M, Tien M. Overproduction of lignin-degrading enzymes by an isolate of Phanerochaete chrysosporium. Appl Environ Microbiol. 1991;57(9):2591–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Valli K, Wariishi H, Gold MH. Oxidation of monomethoxylated aromatic compounds by lignin peroxidase: role of veratryl alcohol in lignin biodegradation. Biochemistry. 1990;29(37):8535–9.

    Article  CAS  PubMed  Google Scholar 

  86. Johjima T, Wariishi H, Tanaka H. Veratryl alcohol binding sites of lignin peroxidase from Phanerochaete chrysosporium. J Mol Catal B Enzym. 2002;17(2):49–57.

    Article  CAS  Google Scholar 

  87. Hammel KE, Cullen D. Role of fungal peroxidases in biological ligninolysis. Curr Opin Plant Biol. 2008;11(3):349–55.

    Article  CAS  PubMed  Google Scholar 

  88. Kersten PJ, Kalyanaraman B, Hammel KE, Reinhammar B, Kirk TK. Comparison of lignin peroxidase, horseradish peroxidase and laccase in the oxidation of methoxybenzenes. Biochem J. 1990;268:475–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Hammel KE, Kalyanaraman B, Kirk TK. Substrate free radicals are intermediates in ligninase catalysis. Proc Natl Acad Sci. 1986;83(11):3708–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Millis CD, Cai D, Stankovich MT, Tien M. Oxidation-reduction potentials and ionization states of extracellular peroxidases from the lignin-degrading fungus Phanerochaete chrysosporium. Biochemistry. 1989;28(21):8484–9.

    Article  CAS  PubMed  Google Scholar 

  91. Doyle WA, Blodig W, Veitch NC, Piontek K, Smith AT. Two substrate interaction sites in lignin peroxidase revealed by site-directed mutagenesis. Biochemistry. 1998;37(43):15097–105.

    Article  CAS  PubMed  Google Scholar 

  92. Mester T, Ambert-Balay K, Ciofi-Baffoni S, Banci L, Jones AD, Tien M. Oxidation of a tetrameric nonphenolic lignin model compound by lignin peroxidase. J Biol Chem. 2001;276(25):22985–90.

    Article  CAS  PubMed  Google Scholar 

  93. Baciocchi E, Fabbri C, Lanzalunga O. Lignin peroxidase-catalyzed oxidation of nonphenolic trimeric lignin model compounds: fragmentation reactions in the intermediate radical cations. J Org Chem. 2003;68(23):9061–9.

    Article  CAS  PubMed  Google Scholar 

  94. Bietti M, Baciocchi E, Steenken S. Lifetime, reduction potential and base-induced fragmentation of the veratryl alcohol radical cation in aqueous solution. Pulse radiolysis studies on a ligninase “mediator”. J Phys Chem A. 1998;102(38):7337–42.

    Article  CAS  Google Scholar 

  95. Candeias LP, Harvey PJ. Lifetime and reactivity of the veratryl alcohol radical cation. Implications for lignin peroxidase catalysis. J Biol Chem. 1995;270(28):16745–8.

    Article  CAS  PubMed  Google Scholar 

  96. Gilardi G, Harvey PJ, Cass AE, Palmer JM. Radical intermediates in veratryl alcohol oxidation by ligninase. NMR evidence. Biochim Biophys Acta Protein Struct Mol Enzymol. 1990;1041(2):129–32.

    Article  CAS  Google Scholar 

  97. Cai D, Tien M. Kinetic studies on the formation and decomposition of compounds II and III. Reactions of lignin peroxidase with H2O2. J Biol Chem. 1992;267(16):11149–55.

    CAS  PubMed  Google Scholar 

  98. Koduri RS, Tien M. Kinetic analysis of lignin peroxidase: explanation for the mediation phenomenon by veratryl alcohol. Biochemistry. 1994;33(14):4225–30.

    Article  CAS  PubMed  Google Scholar 

  99. Hofrichter M. Review: lignin conversion by manganese peroxidase (MnP). Enzym Microb Technol. 2002;30(4):454–66.

    Article  CAS  Google Scholar 

  100. Glenn JK, Gold MH. Purification and characterization of an extracellular Mn (II)-dependent peroxidase from the lignin-degrading basidiomycete, Phanerochaete chrysosporium. Arch Biochem Biophys. 1985;242(2):329–41.

    Article  CAS  PubMed  Google Scholar 

  101. Paszczyński A, Huynh V-B, Crawford R. Enzymatic activities of an extracellular, manganese-dependent peroxidase from Phanerochaete chrysosporium. FEMS Microbiol Lett. 1985;29(1-2):37–41.

    Article  Google Scholar 

  102. Tien M, Kirk TK. Lignin-degrading enzyme from the hymenomycete Phanerochaete chrysosporium Burds. Science (Washington). 1983;221(4611):661–2.

    Article  CAS  Google Scholar 

  103. Glenn JK, Morgan MA, Mayfield MB, Kuwahara M, Gold MH. An extracellular H2O2-requiring enzyme preparation involved in lignin biodegradation by the white rot basidiomycete Phanerochaete chrysosporium. Biochem Biophys Res Commun. 1983;114(3):1077–83.

    Article  CAS  PubMed  Google Scholar 

  104. Pease EA, Tien M. Heterogeneity and regulation of manganese peroxidases from Phanerochaete chrysosporium. J Bacteriol. 1992;174(11):3532–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Glenn JK, Akileswaran L, Gold MH. Mn (II) oxidation is the principal function of the extracellular Mn-peroxidase from Phanerochaete chrysosporium. Arch Biochem Biophys. 1986;251(2):688–96.

    Article  CAS  PubMed  Google Scholar 

  106. Paszczyński A, Huynh V-B, Crawford R. Comparison of ligninase-I and peroxidase-M2 from the white-rot fungus Phanerochaete chrysosporium. Arch Biochem Biophys. 1986;244(2):750–65.

    Article  PubMed  Google Scholar 

  107. Wariishi H, Akileswaran L, Gold MH. Manganese peroxidase from the basidiomycete Phanerochaete chrysosporium: spectral characterization of the oxidized states and the catalytic cycle. Biochemistry. 1988;27(14):5365–70.

    Article  CAS  PubMed  Google Scholar 

  108. Wariishi H, Dunford HB, MacDonald I, Gold MH. Manganese peroxidase from the lignin-degrading basidiomycete Phanerochaete chrysosporium. Transient state kinetics and reaction mechanism. J Biol Chem. 1989;264(6):3335–40.

    CAS  PubMed  Google Scholar 

  109. Wariishi H, Valli K, Gold MH. Manganese (II) oxidation by manganese peroxidase from the basidiomycete Phanerochaete chrysosporium. Kinetic mechanism and role of chelators. J Biol Chem. 1992;267(33):23688–95.

    CAS  PubMed  Google Scholar 

  110. Wariishi H, Valli K, Gold MH. Oxidative cleavage of a phenolic diarylpropane lignin model dimer by manganese peroxidase from Phanerochaete chrysosporium. Biochemistry. 1989;28(14):6017–23.

    Article  CAS  Google Scholar 

  111. Tuor U, Wariishi H, Schoemaker HE, Gold MH. Oxidation of phenolic arylglycerol. beta.-aryl ether lignin model compounds by manganese peroxidase from Phanerochaete chrysosporium: oxidative cleavage of an. alpha.-carbonyl model compound. Biochemistry. 1992;31(21):4986–95.

    Article  CAS  PubMed  Google Scholar 

  112. Reddy GVB, Sridhar M, Gold MH. Cleavage of nonphenolic β‐1 diarylpropane lignin model dimers by manganese peroxidase from Phanerochaete chrysosporium. Eur J Biochem. 2003;270(2):284–92.

    Article  CAS  PubMed  Google Scholar 

  113. Wariishi H, Valli K, Renganathan V, Gold MH. Thiol-mediated oxidation of nonphenolic lignin model compounds by manganese peroxidase of Phanerochaete chrysosporium. J Biol Chem. 1989;264(24):14185–91.

    CAS  PubMed  Google Scholar 

  114. Mester T, Tien M. Engineering of a manganese-binding site in lignin peroxidase isozyme H8 from Phanerochaete chrysosporium. Biochem Biophys Res Commun. 2001;284(3):723–8.

    Article  CAS  PubMed  Google Scholar 

  115. Timofeevski SL, Nie G, Reading NS, Aust SD. Addition of veratryl alcohol oxidase activity to manganese peroxidase by site-directed mutagenesis. Biochem Biophys Res Commun. 1999;256(3):500–4.

    Article  CAS  PubMed  Google Scholar 

  116. Ruiz‐Dueñas FJ, Martínez MJ, Martínez AT. Molecular characterization of a novel peroxidase isolated from the ligninolytic fungus Pleurotus eryngii. Mol Microbiol. 1999;31(1):223–35.

    Article  PubMed  Google Scholar 

  117. Camarero S, Ruiz-Dueñas FJ, Sarkar S, Martínez MJ, Martínez AT. The cloning of a new peroxidase found in lignocellulose cultures of Pleurotus eryngii and sequence comparison with other fungal peroxidases. FEMS Microbiol Lett. 2000;191(1):37–43.

    Article  CAS  PubMed  Google Scholar 

  118. Ruiz-Dueñas FJ, Morales M, García E, Miki Y, Martínez MJ, Martínez AT. Substrate oxidation sites in versatile peroxidase and other basidiomycete peroxidases. J Exp Bot. 2009;60(2):441–52.

    Article  PubMed  CAS  Google Scholar 

  119. Henriksson G, Ander P, Pettersson B, Pettersson G. Cellobiose dehydrogenase (cellobiose oxidase) from Phanerochaete chrysosporium as a wood-degrading enzyme. Studies on cellulose, xylan and synthetic lignin. Appl Microbiol Biotechnol. 1995;42(5):790–6.

    Article  CAS  Google Scholar 

  120. Kersten P, Cullen D. Extracellular oxidative systems of the lignin-degrading Basidiomycete Phanerochaete chrysosporium. Fungal Genet Biol. 2007;44(2):77–87.

    Article  CAS  PubMed  Google Scholar 

  121. Cameron MD, Aust SD. Cellobiose dehydrogenase–an extracellular fungal flavocytochrome. Enzym Microb Technol. 2001;28(2):129–38.

    Article  CAS  Google Scholar 

  122. Henriksson G, Johansson G, Pettersson G. Is cellobiose oxidase from Phanerochaete chrysosporium a one-electron reductase? Biochim Biophys Acta Protein Struct Mol Enzymol. 1993;1144(2):184–90.

    CAS  Google Scholar 

  123. Morpeth FF. Some properties of cellobiose oxidase from the white-rot fungus Sporotrichum pulverulentum. Biochem J. 1985;228:557–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Henriksson G, Sild V, Szabó IJ, Pettersson G, Johansson G. Substrate specificity of cellobiose dehydrogenase from Phanerochaete chrysosporium. Biochim Biophys Acta Protein Struct Mol Enzymol. 1998;1383(1):48–54.

    Article  CAS  Google Scholar 

  125. Henriksson G, Johansson G, Pettersson G. A critical review of cellobiose dehydrogenases. J Biotechnol. 2000;78(2):93–113.

    Article  CAS  PubMed  Google Scholar 

  126. Baldrian P, Valášková V. Degradation of cellulose by basidiomycetous fungi. FEMS Microbiol Rev. 2008;32(3):501–21.

    Article  CAS  PubMed  Google Scholar 

  127. Henriksson G, Pettersson G, Johansson G, Ruiz A, Uzcategui E. Cellobiose oxidase from Phanerochaete chrysosporium can be cleaved by papain into two domains. Eur J Biochem. 1991;196(1):101–6.

    Article  CAS  PubMed  Google Scholar 

  128. Ander P. The cellobiose-oxidizing enzymes CBQ and CbO as related to lignin and cellulose degradation– a review. FEMS Microbiol Rev. 1994;13(2):297–312.

    CAS  Google Scholar 

  129. Archibald F, Bourbonnais R, Jurasek L, Paice M, Reid I. Kraft pulp bleaching and delignification by Trametes versicolor. J Biotechnol. 1997;53(2):215–36.

    Article  CAS  Google Scholar 

  130. Cameron MD, Aust SD. Degradation of chemicals by reactive radicals produced by cellobiose dehydrogenase from Phanerochaete chrysosporium. Arch Biochem Biophys. 1999;367(1):115–21.

    Article  CAS  PubMed  Google Scholar 

  131. Fernández IS, Ruiz-Duenas FJ, Santillana E, Ferreira P, Martínez MJ, Martínez ÁT, Romero A. Novel structural features in the GMC family of oxidoreductases revealed by the crystal structure of fungal aryl-alcohol oxidase. Acta Crystallogr D Biol Crystallogr. 2009;65(11):1196–205.

    Article  PubMed  CAS  Google Scholar 

  132. van den Heuvel RH, van den Berg WA, Rovida S, van Berkel WJ. Laboratory-evolved vanillyl-alcohol oxidase produces natural vanillin. J Biol Chem. 2004;279(32):33492–500.

    Article  PubMed  CAS  Google Scholar 

  133. Wohlfahrt G, Witt S, Hendle J, Schomburg D, Kalisz HM, Hecht H-J. 1.8 and 1.9 Å resolution structures of the Penicillium amagasakiense and Aspergillus niger glucose oxidases as a basis for modelling substrate complexes. Acta Crystallogr D Biol Crystallogr. 1999;55(5):969–77.

    Article  CAS  PubMed  Google Scholar 

  134. Rannes JB, Ioannou A, Willies SC, Grogan G, Behrens C, Flitsch SL, Turner NJ. Glycoprotein labeling using engineered variants of galactose oxidase obtained by directed evolution. J Am Chem Soc. 2011;133(22):8436–9.

    Article  CAS  PubMed  Google Scholar 

  135. Hassan N, Tan T-C, Spadiut O, Pisanelli I, Fusco L, Haltrich D, Peterbauer CK, Divne C. Crystal structures of Phanerochaete chrysosporium pyranose 2-oxidase suggest that the N-terminus acts as a propeptide that assists in homotetramer assembly. FEBS Open Bio. 2013;3:496–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Shah V, Nerud F. Lignin degrading system of white-rot fungi and its exploitation for dye decolorization. Can J Microbiol. 2002;48(10):857–70.

    Article  CAS  PubMed  Google Scholar 

  137. Ferreira P, Medina M, Guillén F, Martinez M, Van Berkel W, Martinez A. Spectral and catalytic properties of aryl-alcohol oxidase, a fungal flavoenzyme acting on polyunsaturated alcohols. Biochem J. 2005;389:731–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Farmer V, Henderson ME, Russell J. Aromatic-alcohol-oxidase activity in the growth medium of Polystictus versicolor. Biochem J. 1960;74(2):257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Guillén F, Martinez AT, Martínez MJ. Production of hydrogen peroxide by aryl-alcohol oxidase from the ligninolytic fungus Pleurotus eryngii. Appl Microbiol Biotechnol. 1990;32(4):465–9.

    Article  Google Scholar 

  140. Muheim A, Waldner R, Leisola MS, Fiechter A. An extracellular aryl-alcohol oxidase from the white-rot fungus Bjerkandera adusta. Enzym Microb Technol. 1990;12(3):204–9.

    Article  CAS  Google Scholar 

  141. Kim SJ, Suzuki N, Uematsu Y, Shoda M. Characterization of aryl alcohol oxidase produced by dye-decolorizing fungus, geotrichum candidum decl. J Biosci Bioeng. 2001;91(2):166–72.

    Article  PubMed  Google Scholar 

  142. Guillen F, Martinez AT, Martinez MJ. Substrate specificity and properties of the aryl‐alcohol oxidase from the ligninolytic fungus Pleurotus eryngii. Eur J Biochem. 1992;209(2):603–11.

    Article  CAS  PubMed  Google Scholar 

  143. Varela E, Martinez A, Martinez M. Molecular cloning of aryl-alcohol oxidase from the fungus Pleurotus eryngii, an enzyme involved in lignin degradation. Biochem J. 1999;341:113–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Hernández-Ortega A, Ferreira P, Martínez AT. Fungal aryl-alcohol oxidase: a peroxide-producing flavoenzyme involved in lignin degradation. Appl Microbiol Biotechnol. 2012;93(4):1395–410.

    Article  PubMed  CAS  Google Scholar 

  145. Varela E, Martınez MJ, Martınez AT. Aryl-alcohol oxidase protein sequence: a comparison with glucose oxidase and other FAD oxidoreductases. Biochim Biophys Acta Protein Struct Mol Enzymol. 2000;1481(1):202–8.

    Article  CAS  Google Scholar 

  146. Hecht H, Kalisz H, Hendle J, Schmid R, Schomburg D. Crystal structure of glucose oxidase from Aspergillus niger refined at 2 · 3 Å reslution. J Mol Biol. 1993;229(1):153–72.

    Article  CAS  PubMed  Google Scholar 

  147. Pazur JH, Kleppe K. The oxidation of glucose and related compounds by glucose oxidase from Aspergillus niger*. Biochemistry. 1964;3(4):578–83.

    Article  CAS  PubMed  Google Scholar 

  148. Wierenga RK, Terpstra P, Hol WG. Prediction of the occurrence of the ADP-binding βαβ-fold in proteins, using an amino acid sequence fingerprint. J Mol Biol. 1986;187(1):101–7.

    Article  CAS  PubMed  Google Scholar 

  149. Gutierrez A, Caramelo L, Prieto A, Martínez MJ, Martinez AT. Anisaldehyde production and aryl-alcohol oxidase and dehydrogenase activities in ligninolytic fungi of the genus Pleurotus. Appl Environ Microbiol. 1994;60(6):1783–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Romero E, Ferreira P, Martínez ÁT, Martínez MJ. New oxidase from Bjerkandera arthroconidial anamorph that oxidizes both phenolic and nonphenolic benzyl alcohols. Biochim Biophys Acta Protein Struct Mol Enzymol. 2009;1794(4):689–97.

    Article  CAS  Google Scholar 

  151. Hernández‐Ortega A, Ferreira P, Merino P, Medina M, Guallar V, Martínez AT. Stereoselective hydride transfer by aryl‐alcohol oxidase, a member of the GMC superfamily. ChemBioChem. 2012;13(3):427–35.

    Article  PubMed  CAS  Google Scholar 

  152. Ferreira P, Hernández‐Ortega A, Lucas F, Carro J, Herguedas B, Borrelli KW, Guallar V, Martínez AT, Medina M. Aromatic stacking interactions govern catalysis in aryl‐alcohol oxidase. FEBS J. 2015;282:3091–106.

    Article  CAS  PubMed  Google Scholar 

  153. van den Heuvel RH, Fraaije MW, Mattevi A, van Berkel WJ. Asp-170 is crucial for the redox properties of vanillyl-alcohol oxidase. J Biol Chem. 2000;275(20):14799–808.

    Article  PubMed  Google Scholar 

  154. van den Heuvel RH, Fraaije MW, Mattevi A, Laane C, van Berkel WJ. Vanillyl-alcohol oxidase, a tasteful biocatalyst. J Mol Catal B Enzym. 2001;11(4):185–8.

    Article  Google Scholar 

  155. Fraaije MW, van Berkel WJ. Catalytic mechanism of the oxidative demethylation of 4-(Methoxymethyl) phenol by vanillyl-alcohol oxidase evidence for formation of a p-quinone methide intermediate. J Biol Chem. 1997;272(29):18111–6.

    Article  CAS  PubMed  Google Scholar 

  156. Mattevi A, Fraaije MW, Mozzarelli A, Olivi L, Coda A, van Berkel WJ. Crystal structures and inhibitor binding in the octameric flavoenzyme vanillyl-alcohol oxidase: the shape of the active-site cavity controls substrate specificity. Structure. 1997;5(7):907–20.

    Article  CAS  PubMed  Google Scholar 

  157. van den Heuvel RH, Fraaije MW, Mattevi A, van Berkel WJ Structure, function and redesign of vanillyl-alcohol oxidase. In: International Congress Series, 2002. Elsevier, p. 13–24

    Google Scholar 

  158. van den Heuvel RH, Fraaije MW, Ferrer M, Mattevi A, van Berkel WJ. Inversion of stereospecificity of vanillyl-alcohol oxidase. Proc Natl Acad Sci. 2000;97(17):9455–60.

    Article  PubMed Central  Google Scholar 

  159. Whittaker MM, Kersten PJ, Nakamura N, Sanders-Loehr J, Schweizer ES, Whittaker JW. Glyoxal oxidase from Phanerochaete chrysosporium is a new radical-copper oxidase. J Biol Chem. 1996;271(2):681–7.

    Article  CAS  PubMed  Google Scholar 

  160. Whittaker MM, Kersten PJ, Cullen D, Whittaker JW. Identification of catalytic residues in glyoxal oxidase by targeted mutagenesis. J Biol Chem. 1999;274(51):36226–32.

    Article  CAS  PubMed  Google Scholar 

  161. Kersten PJ, Kirk TK. Involvement of a new enzyme, glyoxal oxidase, in extracellular H2O2 production by Phanerochaete chrysosporium. J Bacteriol. 1987;169(5):2195–201.

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Kersten PJ, Cullen D. Cloning and characterization of cDNA encoding glyoxal oxidase, a H2O2-producing enzyme from the lignin-degrading basidiomycete Phanerochaete chrysosporium. Proc Natl Acad Sci. 1993;90(15):7411–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Itoh S, Hirano K, Furuta A, Komatsu M, Ohshiro Y, Ishida A, Takamuku S, Kohzuma T, Nakamura N, Suzuki S. Physicochemical properties of 2-Methylthio-4-methylphenol, a model compound of the novel cofactor of galactose oxidase. Chem Lett. 1993;12:2099–102.

    Article  Google Scholar 

  164. Kersten PJ, Witek C, Vanden Wymelenberg A, Cullen D. Phanerochaete chrysosporium glyoxal oxidase is encoded by two allelic variants: structure, genomic organization, and heterologous expression of glx1 and glx2. J Bacteriol. 1995;177(21):6106–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Danneel HJ, Rossner E, Zeeck A, Giffhorn F. Purification and characterization of a pyranose oxidase from the basidiomycete Peniophora gigantea and chemical analyses of its reaction products. Eur J Biochem. 1993;214(3):795–802.

    Article  CAS  PubMed  Google Scholar 

  166. Izumi Y, Furuya Y, Yamada H. Purification and properties of pyranose oxidase from basidiomycetous fungus no. 52. Agric Biol Chem. 1990;54(6):1393–9.

    CAS  Google Scholar 

  167. Machida Y, Nakanishi T. Purification and properties of pyranose oxidase from Coriolus versicolor. Agric Biol Chem. 1984;48(10):2463–70.

    CAS  Google Scholar 

  168. Daniel G, Volc J, Kubatova E. Pyranose oxidase, a major source of H2O2 during wood degradation by Phanerochaete chrysosporium, Trametes versicolor, and Oudemansiella mucida. Appl Environ Microbiol. 1994;60(7):2524–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Cavener DR. GMC oxidoreductases: a newly defined family of homologous proteins with diverse catalytic activities. J Mol Biol. 1992;223(3):811–4.

    Article  CAS  PubMed  Google Scholar 

  170. Hallberg BM, Leitner C, Haltrich D, Divne C. Crystal structure of the 270 kDa homotetrameric lignin-degrading enzyme pyranose 2-oxidase. J Mol Biol. 2004;341(3):781–96.

    Article  CAS  PubMed  Google Scholar 

  171. Giffhorn F. Fungal pyranose oxidases: occurrence, properties and biotechnical applications in carbohydrate chemistry. Appl Microbiol Biotechnol. 2000;54(6):727–40.

    Article  CAS  PubMed  Google Scholar 

  172. Volc J, Sedmera P, Havlíček V, Přikrylová V, Daniel G. Conversion of D-glucose to D-erythro-hexos-2, 3-diulose (2, 3-diketo-D-glucose) by enzyme preparations from the basidiomycete Oudemansiella mucida. Carbohydr Res. 1995;278(1):59–70.

    Article  CAS  Google Scholar 

  173. Freimund S, Huwig A, Giffhorn F, Köpper S. Rare keto-aldoses from enzymatic oxidation: substrates and oxidation products of pyranose 2-oxidase. Chem Eur J. 1998;4(12):2442–55.

    Article  CAS  Google Scholar 

  174. Giffhorn F, Köpper S, Huwig A, Freimund S. Rare sugars and sugar-based synthons by chemo-enzymatic synthesis. Enzym Microb Technol. 2000;27(10):734–42.

    Article  CAS  Google Scholar 

  175. Baron AJ, Stevens C, Wilmot C, Seneviratne KD, Blakeley V, Dooley DM, Phillips S, Knowles PF, McPherson MJ. Structure and mechanism of galactose oxidase. The free radical site. J Biol Chem. 1994;269(40):25095–105.

    CAS  PubMed  Google Scholar 

  176. Firbank S, Rogers M, Wilmot C, Dooley D, Halcrow M, Knowles P, McPherson M, Phillips S. Crystal structure of the precursor of galactose oxidase: an unusual self-processing enzyme. Proc Natl Acad Sci. 2001;98(23):12932–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Yin D, Urresti S, Lafond M, Johnston EM, Derikvand F, Ciano L, Berrin J-G, Henrissat B, Walton PH, Davies GJ, Brumer H. Structure-function characterization reveals new catalytic diversity in the galactose oxidase and glyoxal oxidase family. Nat Commun. 2015;6:10197. doi:10.1038/ncomms10197.

    Article  CAS  PubMed  Google Scholar 

  178. Ito N, Phillips SE, Stevens C, Ogel ZB, McPherson MJ, Keen JN, Yadav KD, Knowles PF. Novel thioether bond revealed by a 1.7 Å crystal structure of galactose oxidase. Nature. 1991;350:87–90.

    Article  CAS  PubMed  Google Scholar 

  179. Bankar SB, Bule MV, Singhal RS, Ananthanarayan L. Glucose oxidase—an overview. Biotechnol Adv. 2009;27(4):489–501.

    Article  CAS  PubMed  Google Scholar 

  180. Hatzinikolaou D, Macris B. Factors regulating production of glucose oxidase by Aspergillus niger. Enzym Microb Technol. 1995;17(6):530–4.

    Article  CAS  Google Scholar 

  181. Kapat A, Jung J, Park Y. Enhancement of glucose oxidase production in batch cultivation of recombinant Saccharomyces cerevisiae: optimization of oxygen transfer condition. J Appl Microbiol. 2001;90(2):216–22.

    Article  CAS  PubMed  Google Scholar 

  182. Kalisz H, Hendle J, Schmid R. Structural and biochemical properties of glycosylated and deglycosylated glucose oxidase from Penicillium amagasakiense. Appl Microbiol Biotechnol. 1997;47(5):502–7.

    Article  CAS  PubMed  Google Scholar 

  183. Kusai K, Sekuzu I, Hagihara B, Okunuki K, Yamauchi S, Nakai M. Crystallization of glucose oxidase from Penicillium amagasakiense. Biochim Biophys Acta. 1960;40:555–7.

    Article  CAS  PubMed  Google Scholar 

  184. Nakamura S, FUJIKI S. Comparative studies on the glucose oxidases of Aspergillus niger and Penicillium amagasakiense. J Biochem. 1968;63(1):51–8.

    CAS  PubMed  Google Scholar 

  185. Witt S, Wohlfahrt G, Schomburg D, Hecht H, Kalisz H. Conserved arginine-516 of Penicillium amagasakiense glucose oxidase is essential for the efficient binding of β-D-glucose. Biochem J. 2000;347:553–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Witteveen CF, Veenhuis M, Visser J. Localization of glucose oxidase and catalase activities in Aspergillus niger. Appl Environ Microbiol. 1992;58(4):1190–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Raba J, Mottola HA. Glucose oxidase as an analytical reagent. Crit Rev Anal Chem. 1995;25(1):1–42.

    Article  CAS  Google Scholar 

  188. Brock BJ, Rieble S, Gold MH. Purification and Characterization of a 1, 4-Benzoquinone Reductase from the Basidiomycete Phanerochaete chrysosporium. Appl Environ Microbiol. 1995;61(8):3076–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Akileswaran L, Brock BJ, Cereghino JL, Gold MH. 1, 4-Benzoquinone reductase from Phanerochaete chrysosporium: cDNA cloning and regulation of expression. Appl Environ Microbiol. 1999;65(2):415–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Brock BJ, Gold MH. 1, 4-Benzoquinone reductase from the basidiomycetePhanerochaete chrysosporium: spectral and kinetic analysis. Arch Biochem Biophys. 1996;331(1):31–40.

    Article  CAS  PubMed  Google Scholar 

  191. Aitor H-O, Kenneth B, Patricia F, Milagros M, Angel TM, Victor G. Substrate diffusion and oxidation in GMC oxidoreductases: an experimental and computational study on fungal aryl-alcohol oxidase. Biochem J. 2011;436(2):341–50.

    Article  CAS  Google Scholar 

  192. Hernández-Ortega A, Lucas F, Ferreira P, Medina M, Guallar V, Martínez AT. Modulating O2 reactivity in a fungal flavoenzyme involvement of aryl-alcohol oxidase PHE-501 contiguous to catalytic histidine. J Biol Chem. 2011;286(47):41105–14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  193. Hernández-Ortega A, Lucas F, Ferreira P, Medina M, Guallar V, Martínez AT. Role of active site histidines in the two half-reactions of the aryl-alcohol oxidase catalytic cycle. Biochemistry. 2012;51(33):6595–608.

    Article  PubMed  CAS  Google Scholar 

  194. Fraaije MW, van den Heuvel RH, van Berkel WJ, Mattevi A. Covalent flavinylation is essential for efficient redox catalysis in vanillyl-alcohol oxidase. J Biol Chem. 1999;274(50):35514–20.

    Article  CAS  PubMed  Google Scholar 

  195. Fraaije MW, van den Heuvel RH, van Berkel WJ, Mattevi A. Structural analysis of flavinylation in vanillyl-alcohol oxidase. J Biol Chem. 2000;275(49):38654–8.

    Article  CAS  PubMed  Google Scholar 

  196. Vaidyanathan M, Palaniandavar M, Gopalan RS. Copper (II) complexes of sterically hindered phenolate ligands as structural models for the active site in galactose oxidase and glyoxal oxidase: x-ray crystal structure and spectral and redox properties. Inorg Chim Acta. 2001;324(1):241–51.

    Article  CAS  Google Scholar 

  197. Halfen JA, Jazdzewski BA, Mahapatra S, Berreau LM, Wilkinson EC, Que L, Tolman WB. Synthetic models of the inactive copper (II)-tyrosinate and active copper (II)-tyrosyl radical forms of galactose and glyoxal oxidases. J Am Chem Soc. 1997;119(35):8217–27.

    Article  CAS  Google Scholar 

  198. Kujawa M, Ebner H, Leitner C, Hallberg BM, Prongjit M, Sucharitakul J, Ludwig R, Rudsander U, Peterbauer C, Chaiyen P. Structural basis for substrate binding and regioselective oxidation of monosaccharides at C3 by pyranose 2-oxidase. J Biol Chem. 2006;281(46):35104–15.

    Article  CAS  PubMed  Google Scholar 

  199. Pitsawong W, Sucharitakul J, Prongjit M, Tan T-C, Spadiut O, Haltrich D, Divne C, Chaiyen P. A conserved active-site threonine is important for both sugar and flavin oxidations of pyranose 2-oxidase. J Biol Chem. 2010;285(13):9697–705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Spadiut O, Tan TC, Pisanelli I, Haltrich D, Divne C. Importance of the gating segment in the substrate‐recognition loop of pyranose 2‐oxidase. FEBS J. 2010;277(13):2892–909.

    Article  CAS  PubMed  Google Scholar 

  201. Heckmann-Pohl DM, Bastian S, Altmeier S, Antes I. Improvement of the fungal enzyme pyranose 2-oxidase using protein engineering. J Biotechnol. 2006;124(1):26–40.

    Article  CAS  PubMed  Google Scholar 

  202. Bannwarth M, Heckmann-Pohl D, Bastian S, Giffhorn F, Schulz GE. Reaction geometry and thermostable variant of pyranose 2-oxidase from the white-rot fungus Peniophora sp. Biochemistry. 2006;45(21):6587–95.

    Article  CAS  PubMed  Google Scholar 

  203. Rogers MS, Tyler EM, Akyumani N, Kurtis CR, Spooner RK, Deacon SE, Tamber S, Firbank SJ, Mahmoud K, Knowles PF. The stacking tryptophan of galactose oxidase: a second-coordination sphere residue that has profound effects on tyrosyl radical behavior and enzyme catalysis. Biochemistry. 2007;46(15):4606–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Ito N, Phillips SE, Yadav KD, Knowles PF. Crystal structure of a free radical enzyme, galactose oxidase. J Mol Biol. 1994;238(5):704–814.

    Article  Google Scholar 

  205. Hecht H, Schomburg D, Kalisz H, Schmid R. The 3D structure of glucose oxidase from Aspergillus niger. Implications for the use of GOD as a biosensor enzyme. Biosens Bioelectron. 1993;8(3):197–203.

    Article  CAS  PubMed  Google Scholar 

  206. Martinez D, Larrondo LF, Putnam N, Gelpke MDS, Huang K, Chapman J, Helfenbein KG, Ramaiya P, Detter JC, Larimer F. Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78. Nat Biotechnol. 2004;22(6):695–700.

    Article  CAS  PubMed  Google Scholar 

  207. Wymelenberg AV, Minges P, Sabat G, Martinez D, Aerts A, Salamov A, Grigoriev I, Shapiro H, Putnam N, Belinky P. Computational analysis of the Phanerochaete chrysosporium v2. 0 genome database and mass spectrometry identification of peptides in ligninolytic cultures reveal complex mixtures of secreted proteins. Fungal Genet Biol. 2006;43(5):343–56.

    Article  CAS  Google Scholar 

  208. Martinez D, Challacombe J, Morgenstern I, Hibbett D, Schmoll M, Kubicek CP, Ferreira P, Ruiz-Duenas FJ, Martinez AT, Kersten P. Genome, transcriptome, and secretome analysis of wood decay fungus Postia placenta supports unique mechanisms of lignocellulose conversion. Proc Natl Acad Sci. 2009;106(6):1954–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Eastwood DC, Floudas D, Binder M, Majcherczyk A, Schneider P, Aerts A, Asiegbu FO, Baker SE, Barry K, Bendiksby M. The plant cell wall–decomposing machinery underlies the functional diversity of forest fungi. Science. 2011;333(6043):762–5.

    Article  CAS  PubMed  Google Scholar 

  210. Tang JD, Perkins AD, Sonstegard TS, Schroeder SG, Burgess SC, Diehl SV. Short-read sequencing for genomic analysis of the brown rot fungus Fibroporia radiculosa. Appl Environ Microbiol. 2012;78(7):2272–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Ohm RA, De Jong JF, Lugones LG, Aerts A, Kothe E, Stajich JE, De Vries RP, Record E, Levasseur A, Baker SE. Genome sequence of the model mushroom Schizophyllum commune. Nat Biotechnol. 2010;28(9):957–63.

    Article  CAS  PubMed  Google Scholar 

  212. Fernandez-Fueyo E, Ruiz-Dueñas FJ, Ferreira P, Floudas D, Hibbett DS, Canessa P, Larrondo LF, James TY, Seelenfreund D, Lobos S. Comparative genomics of Ceriporiopsis subvermispora and Phanerochaete chrysosporium provide insight into selective ligninolysis. Proc Natl Acad Sci. 2012;109(14):5458–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Suzuki H, MacDonald J, Syed K, Salamov A, Hori C, Aerts A, Henrissat B, Wiebenga A, Barry K, Lindquist E. Comparative genomics of the white-rot fungi, Phanerochaete carnosa and P. chrysosporium, to elucidate the genetic basis of the distinct wood types they colonize. BMC Genomics. 2012;13(1):444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Olson Å, Aerts A, Asiegbu F, Belbahri L, Bouzid O, Broberg A, Canbäck B, Coutinho PM, Cullen D, Dalman K. Insight into trade‐off between wood decay and parasitism from the genome of a fungal forest pathogen. New Phytol. 2012;194(4):1001–13.

    Article  PubMed  Google Scholar 

  215. Martin F, Aerts A, Ahrén D, Brun A, Danchin E, Duchaussoy F, Gibon J, Kohler A, Lindquist E, Pereda V. The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis. Nature. 2008;452(7183):88–92.

    Article  CAS  PubMed  Google Scholar 

  216. Bao D, Gong M, Zheng H, Chen M, Zhang L, Wang H, Jiang J, Wu L, Zhu Y, Zhu G. Sequencing and comparative analysis of the straw mushroom (Volvariella volvacea) genome. PLoS One. 2013;8(3), e58294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Morin E, Kohler A, Baker AR, Foulongne-Oriol M, Lombard V, Nagye LG, Ohm RA, Patyshakuliyeva A, Brun A, Aerts AL. Genome sequence of the button mushroom Agaricus bisporus reveals mechanisms governing adaptation to a humic-rich ecological niche. Proc Natl Acad Sci. 2012;109(43):17501–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Collins C, Keane TM, Turner DJ, O’Keeffe G, Fitzpatrick DA, Doyle S. Genomic and proteomic dissection of the ubiquitous plant pathogen, Armillaria mellea: toward a new infection model system. J Proteome Res. 2013;12(6):2552–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Ohm RA, Riley R, Salamov A, Min B, Choi I-G, Grigoriev IV. Genomics of wood-degrading fungi. Fungal Genet Biol. 2014;72:82–90.

    Article  CAS  PubMed  Google Scholar 

  220. Floudas D, Binder M, Riley R, Barry K, Blanchette RA, Henrissat B, Martínez AT, Otillar R, Spatafora JW, Yadav JS. The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science. 2012;336(6089):1715–9.

    Article  CAS  PubMed  Google Scholar 

  221. Hofrichter M, Ullrich R, Pecyna MJ, Liers C, Lundell T. New and classic families of secreted fungal heme peroxidases. Appl Microbiol Biotechnol. 2010;87(3):871–97.

    Article  CAS  PubMed  Google Scholar 

  222. Grigoriev IV, Nikitin R, Haridas S, Kuo A, Ohm R, Otillar R, Riley R, Salamov A, Zhao X, Korzeniewski F. MycoCosm portal: gearing up for 1000 fungal genomes. Nucleic Acids Res. 2013;42:D699–704.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wensheng Qin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Kameshwar, A.K.S., Qin, W. (2016). Lignin Degrading Fungal Enzymes. In: Fang, Z., Smith, Jr., R. (eds) Production of Biofuels and Chemicals from Lignin. Biofuels and Biorefineries. Springer, Singapore. https://doi.org/10.1007/978-981-10-1965-4_4

Download citation

Publish with us

Policies and ethics