Skip to main content

Lignin Depolymerization (LDP) with Solvolysis for Selective Production of Renewable Aromatic Chemicals

  • Chapter
  • First Online:
Production of Biofuels and Chemicals from Lignin

Part of the book series: Biofuels and Biorefineries ((BIOBIO))

Abstract

Solvolysis is one of the promising methods to convert lignin to different kinds of value-added aromatic chemicals through solvent-lignin specific interactions. The process involving the depolymerization of the lignin macromolecule and repolymerization of fragments in the solvent system is influenced by temperature including heating method, experimental conditions, presence of catalyst and solvent system. Favorable solvent systems improve the yield of specific aromatic compounds and reduce the number of undesirable compounds including solids. In this chapter conceptual guidelines for using solvolysis with lignin and optimization of lignin depolymerization process for value-added chemical production are given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Azarpira A, Ralph J, Lu F. Catalytic alkaline oxidation of lignin and its model compounds: a pathway to aromatic biochemicals. BioEnergy Res. 2013;7:78–86.

    Article  Google Scholar 

  2. Badamali S, Clark J, Breeden S. Microwave assisted selective oxidation of lignin model phenolic monomer over SBA-15. Catal Commun. 2008;9:2168–70.

    Article  CAS  Google Scholar 

  3. Badamali S, Luque R, Clark J, Breeden S. Microwave assisted oxidation of a lignin model phenolic monomer using Co(salen)/SBA-15. Catal Commun. 2009;10:1010–3.

    Article  CAS  Google Scholar 

  4. Barta K, Matson TD, Fettig ML, Scott SL, Iretskii AV, Ford PC. Catalytic disassembly of an organosolv lignin via hydrogen transfer from supercritical methanol. Green Chem. 2010;12:1640.

    Article  CAS  Google Scholar 

  5. Barta K, Warner GR, Beach ES, Anastas PT. Depolymerization of organosolv lignin to aromatic compounds over Cu-doped porous metal oxides. Green Chem. 2014;16:191–6.

    Article  CAS  Google Scholar 

  6. Bruijnincx PCA, Weckhuysen BM. Biomass conversion: lignin up for break-down. Nat Chem. 2014;6:1035–6.

    Article  CAS  PubMed  Google Scholar 

  7. Bu Q, Lei H, Ren S, Wang L, Zhang Q, Tang J, Ruan R. Production of phenols and biofuels by catalytic microwave pyrolysis of lignocellulosic biomass. Bioresour Technol. 2012;108:274–9.

    Article  CAS  PubMed  Google Scholar 

  8. Chan JMW, Bauer S, Sorek H, Sreekumar S, Wang K, Toste FD. Studies on the vanadium-catalyzed nonoxidative depolymerization of Miscanthus giganteus-derived lignin. ACS Catal. 2013;3:1369–77.

    Article  CAS  Google Scholar 

  9. Demesa AG, Laari A, Turunen I, Sillanpää M. Alkaline partial wet oxidation of lignin for the production of carboxylic acids. Chem Eng Technol. 2015;38:2270–8.

    Article  CAS  Google Scholar 

  10. Deuss PJ, Barta K. From models to lignin: transition metal catalysis for selective bond cleavage reactions. Coord Chem Rev. 2016;306:510–32.

    Article  CAS  Google Scholar 

  11. Deuss PJ, Scott M, Tran F, Westwood NJ, De Vries JG, Barta K. Aromatic monomers by in situ conversion of reactive intermediates in the acid-catalyzed depolymerization of lignin. J Am Chem Soc. 2015;137:7456–67.

    Article  CAS  PubMed  Google Scholar 

  12. Dong C, Feng C, Liu Q, Shen D, Xiao R. Mechanism on microwave-assisted acidic solvolysis of black-liquor lignin. Bioresour Technol. 2014;162:136–41.

    Article  CAS  PubMed  Google Scholar 

  13. Fu J, Peng J, Li X. A method of producing phenolic compounds with low molecular weight with hydrogen-donating solvents under microwave irradiation. 2012.

    Google Scholar 

  14. Gao Y, Zhang J, Chen X, Ma D, Yan N. A metal-free, carbon-based catalytic system for the oxidation of lignin model compounds and lignin. ChemPlusChem. 2014;79:825–34.

    Article  CAS  Google Scholar 

  15. Gu X, He M, Shi Y, Li Z. LA-containing SBA-15/H2O2 systems for the microwave assisted oxidation of a lignin model phenolic monomer. Maderas Ciencia y Tecnología. 2010;12:181–8.

    Article  CAS  Google Scholar 

  16. Gu X, He M, Shi Y, Li Z. La-modified SBA-15/H2O2 systems for the microwave assisted oxidation of organosolv beech wood lignin. Maderas Ciencia y Tecnología. 2012;14:31–41.

    Article  CAS  Google Scholar 

  17. Gu X, He M, Shi Y, Li Z. Production of aromotic aldehyde by microwave catalytic oxidation of a lignin model compound with La-containing SBA-15/H2O2 systems. BioResources. 2010;5:2029–39.

    CAS  Google Scholar 

  18. Haibach MC, Lease N, Goldman AS. Catalytic cleavage of ether C–O bonds by pincer iridium complexes. Angew Chem. 2014;53:10160–3.

    Article  CAS  Google Scholar 

  19. Hanson SK, Baker RT. Knocking on wood: base metal complexes as catalysts for selective oxidation of lignin models and extracts. Acc Chem Res. 2015;48:2037–48.

    Article  CAS  PubMed  Google Scholar 

  20. Hanson SK, Baker RT, Gordon JC, Scott BL, Thorn DL. Aerobic oxidation of lignin models using a base metal vanadium catalyst. Inorg Chem. 2010;49:5611–8.

    Article  CAS  PubMed  Google Scholar 

  21. Hanson SK, Wu R, Silks AL. C–C or C–O bond cleavage in a phenolic lignin model compound: selectivity depends on vanadium catalyst. Angew Chem Int Ed. 2012;51:3410–3.

    Article  CAS  Google Scholar 

  22. Huang S, Mahmood N, Tymchyshyn M, Yuan Z, Xu C. Reductive depolymerization of Kraft lignin for chemicals and fuels using formic acid as an in-situ hydrogen source. Bioresour Technol. 2014;171:95–102.

    Article  CAS  PubMed  Google Scholar 

  23. Jiang Z, He T, Li J, Hu C. Selective conversion of lignin in corncob residue to monophenols with high yield and selectivity. Green Chem. 2014;16:4257.

    Article  CAS  Google Scholar 

  24. Jie-Wang Y, Gui-Zhen F, Chun-De J. Hydrogenation of alkali lignin catalyzed by Pd/C. APCBEE Procedia. 2012;3:53–9.

    Article  Google Scholar 

  25. Jongerius AL, Bruijnincx PCA, Weckhuysen BM. Liquid-phase reforming and hydrodeoxygenation as a two-step route to aromatics from lignin. Green Chem. 2013;15:3049.

    Article  CAS  Google Scholar 

  26. Jongerius AL, Gosselink RW, Dijkstra J, Bitter JH, Bruijnincx PCA, Weckhuysen BM. Carbon nanofiber supported transition-metal carbide catalysts for the hydrodeoxygenation of guaiacol. ChemCatChem. 2013;5:2964–72.

    Article  CAS  Google Scholar 

  27. Jongerius AL, Jastrzebski R, Bruijnincx PCA, Weckhuysen BM. CoMo sulfide-catalyzed hydrodeoxygenation of lignin model compounds: an extended reaction network for the conversion of monomeric and dimeric substrates. J Catal. 2012;285:315–23.

    Article  CAS  Google Scholar 

  28. Kloekhorst A, Shen Y, Yie Y, Fang M, Heeres HJ. Catalytic hydrodeoxygenation and hydrocracking of Alcell® lignin in alcohol/formic acid mixtures using a Ru/C catalyst. Biomass Bioenergy. 2015;80:147–61.

    Article  CAS  Google Scholar 

  29. Lancefield CS, Ojo OS, Tran F, Westwood NJ. Isolation of functionalized phenolic monomers through selective oxidation and C–O bond cleavage of the β-O-4 linkages in lignin. Angew Chem Int Ed. 2015;54:258–62.

    Article  CAS  Google Scholar 

  30. Lee CR, Yoon JS, Suh Y-W, Choi J-W, Ha J-M, Suh DJ, Park Y-K. Catalytic roles of metals and supports on hydrodeoxygenation of lignin monomer guaiacol. Catal Commun. 2012;17:54–8.

    Article  CAS  Google Scholar 

  31. Li B. Study on liquefaction and degradation of wheat straw alkali lignin assisted by microwave irradiation. Guangzhou: South China University of Technology; 2013.

    Google Scholar 

  32. Li C, Zhao X, Wang A, Huber GW, Zhang T. Catalytic transformation of lignin for the production of chemicals and fuels. Chem Rev. 2015;115:11559–624.

    Article  CAS  PubMed  Google Scholar 

  33. Li C, Zheng M, Wang A, Zhang T. One-pot catalytic hydrocracking of raw woody biomass into chemicals over supported carbide catalysts: simultaneous conversion of cellulose, hemicellulose and lignin. Energy Environ Sci. 2012;5:6383–90.

    Article  CAS  Google Scholar 

  34. Liguori L, Barth T. Palladium-Nafion SAC-13 catalysed depolymerisation of lignin to phenols in formic acid and water. J Anal Appl Pyrolysis. 2011;92:477–84.

    Article  CAS  Google Scholar 

  35. Ma R, Hao W, Ma X, Tian Y, Li Y. Catalytic ethanolysis of kraft lignin into high-value small-molecular chemicals over a nanostructured α-molybdenum carbide catalyst. Angew Chem Int Ed. 2014;53:7310–5.

    Article  CAS  Google Scholar 

  36. Matson TD, Barta K, Iretskii AV, Ford PC. One-pot catalytic conversion of cellulose and of woody biomass solids to liquid fuels. J Am Chem Soc. 2011;133:14090–7.

    Article  CAS  PubMed  Google Scholar 

  37. Maziero P, Neto MDO, Machado D, Batista T, Cavalheiro CCS, Neumann MG, Craievich AF, et al. Structural features of lignin obtained at different alkaline oxidation conditions from sugarcane bagasse. Ind Crop Prod. 2012;35:61–9.

    Article  CAS  Google Scholar 

  38. Napoly F, Kardos N, Jean-Gérard L, Goux-Henry C, Andrioletti B, Draye M. H2O2-mediated Kraft lignin oxidation with readily available metal salts: what about the effect of ultrasound? Ind Eng Chem Res. 2015;54:6046–51.

    Article  CAS  Google Scholar 

  39. Nimmanwudipong T, Runnebaum RC, Block DE, Gates BC. Catalytic conversion of guaiacol catalyzed by platinum supported on alumina: reaction network including hydrodeoxygenation reactions. Energy Fuel. 2011;25:3417–27.

    Article  CAS  Google Scholar 

  40. Ohta H, Kobayashi H, Hara K, Fukuoka A. Hydrodeoxygenation of phenols as lignin models under acid-free conditions with carbon-supported platinum catalysts. Chem Commun. 2011;47:12209.

    Article  CAS  Google Scholar 

  41. Oliver Kappe C. Microwave dielectric heating in synthetic organic chemistry. Chem Soc Rev. 2008;37:1127–39.

    Article  CAS  PubMed  Google Scholar 

  42. Oregui Bengoechea M, Hertzberg A, Miletić N, Arias PL, Barth T. Simultaneous catalytic de-polymerization and hydrodeoxygenation of lignin in water/formic acid media with Rh/Al2O3, Ru/Al2O3 and Pd/Al2O3 as bifunctional catalysts. J Anal Appl Pyrolysis. 2015;113:713–22.

    Article  CAS  Google Scholar 

  43. Ouyang X, Huang X, Zhu Y, Qiu X. Ethanol-enhanced liquefaction of lignin with formic acid as an in situ hydrogen donor. Energy Fuel. 2015;29:5835–40.

    Article  CAS  Google Scholar 

  44. Ouyang X, Lin Z, Deng Y, Yang D, Qiu X. Oxidative degradation of soda lignin assisted by microwave irradiation. Chin J Chem Eng. 2010;18:695–702.

    Article  CAS  Google Scholar 

  45. Ouyang X, Zhu G, Huang X, Qiu X. Microwave assisted liquefaction of wheat straw alkali lignin for the production of monophenolic compounds. J Energy Chem. 2015;24:72–6.

    Article  Google Scholar 

  46. Pan J, Fu J, Lu X. Microwave-assisted oxidative degradation of lignin model compounds with metal salts. Energy Fuel. 2015;29:4503–9.

    Article  CAS  Google Scholar 

  47. Parker HJ, Chuck CJ, Woodman T, Jones MD. Degradation of β-O-4 model lignin species by vanadium Schiff-base catalysts: influence of catalyst structure and reaction conditions on activity and selectivity. Catal Today. 2015;269:40–7.

    Article  Google Scholar 

  48. Parsell TH, Owen BC, Klein I, Jarrell TM, Marcum CL, Haupert LJ, Amundson LM, et al. Cleavage and hydrodeoxygenation (HDO) of C–O bonds relevant to lignin conversion using Pd/Zn synergistic catalysis. Chem Sci. 2013;4:806–13.

    Article  CAS  Google Scholar 

  49. Rahimi A, Azarpira A, Kim H, Ralph J, Stahl SS. Chemoselective metal-free aerobic alcohol oxidation in lignin. J Am Chem Soc. 2013;135:6415–8.

    Article  CAS  PubMed  Google Scholar 

  50. Rahimi A, Ulbrich A, Coon JJ, Stahl SS. Formic-acid-induced depolymerization of oxidized lignin to aromatics. Nature. 2014;515:249–52.

    Article  CAS  PubMed  Google Scholar 

  51. Sequeiros A, Serrano L, Briones R, Labidi J. Lignin liquefaction under microwave heating. J Appl Polym Sci. 2013;130:3292–8.

    Article  CAS  Google Scholar 

  52. Sergeev AG, Hartwig JF. Selective, nickel-catalyzed hydrogenolysis of aryl ethers. Science. 2011;332:439–43.

    Article  CAS  PubMed  Google Scholar 

  53. Shen D, Liu N, Dong C, Xiao R, Gu S. Catalytic solvolysis of lignin with the modified HUSYs in formic acid assisted by microwave heating. Chem Eng J. 2015;270:641–7.

    Article  CAS  Google Scholar 

  54. Son S, Toste FD. Non-oxidative vanadium-catalyzed C–O bond cleavage: application to degradation of lignin model compounds. Angew Chem. 2010;49:3791–4.

    Article  CAS  Google Scholar 

  55. Song Q, Wang F, Cai J, Wang Y, Zhang J, Yu W, Xu J. Lignin depolymerization (LDP) in alcohol over nickel-based catalysts via a fragmentation–hydrogenolysis process. Energy Environ Sci. 2013;6:994.

    Article  CAS  Google Scholar 

  56. Stein TV, Hartog T, Buendia J, Stoychev S, Mottweiler J, Bolm C, Leitner W. Ruthenium-catalyzed C–C bond cleavage in lignin model substrates. Angew Chem. 2015;54:5859–63.

    Article  Google Scholar 

  57. Toledano A, Serrano L, Labidi J. Improving base catalyzed lignin depolymerization by avoiding lignin repolymerization. Fuel. 2014;116:617–24.

    Article  CAS  Google Scholar 

  58. Toledano A, Serrano L, Labidi J, Pineda A, Balu AM, Luque R. Heterogeneously catalysed mild hydrogenolytic depolymerisation of lignin under microwave irradiation with hydrogen-donating solvents. ChemCatChem. 2013;5:977–85.

    Article  CAS  Google Scholar 

  59. Toledano A, Serrano L, Pineda A, Romero AA, Luque R, Labidi J. Microwave-assisted depolymerisation of organosolv lignin via mild hydrogen-free hydrogenolysis: catalyst screening. Appl Catal B Environ. 2014;145:43–55.

    Article  CAS  Google Scholar 

  60. Voitl T, Rohr PRV. Demonstration of a process for the conversion of kraft lignin into vanillin and methyl vanillate by acidic oxidation in aqueous methanol. Ind Eng Chem Res. 2010;49:520–5.

    Article  CAS  Google Scholar 

  61. Voitl T, Rohr PRV. Oxidation of lignin using aqueous polyoxometalates in the presence of alcohols. ChemSusChem. 2008;1:763–9.

    Article  CAS  PubMed  Google Scholar 

  62. Wang X, Rinaldi R. A route for lignin and bio-oil conversion: dehydroxylation of phenols into arenes by catalytic tandem reactions. Angew Chem Int Ed. 2013;52:11499–503.

    Article  CAS  Google Scholar 

  63. Wang X, Rinaldi R. Solvent effects on the hydrogenolysis of diphenyl ether with Raney nickel and their implications for the conversion of lignin. ChemSusChem. 2012;5:1455–66.

    Article  CAS  PubMed  Google Scholar 

  64. Werhan H, Mir JM, Voitl T, Rudolf Von Rohr P. Acidic oxidation of kraft lignin into aromatic monomers catalyzed by transition metal salts. Holzforschung. 2011;65:703–9.

    Article  CAS  Google Scholar 

  65. Wu A, Lauzon JM, Andriani I, James BR. Breakdown of lignins, lignin model compounds, and hydroxy-aromatics, to C1 and C2 chemicals via metal-free oxidation with peroxide or persulfate under mild conditions. RSC Adv. 2014;4:17931.

    Article  CAS  Google Scholar 

  66. Xiao W, Han L, Zhao Y. Comparative study of conventional and microwave-assisted liquefaction of corn stover in ethylene glycol. Ind Crop Prod. 2011;34:1602–6.

    Article  CAS  Google Scholar 

  67. Xiong J. Studies on catalytic degradation of lignin model compounds with the assistance of microwave and hydrogen-donor solvents. Hangzhou: Zhejiang University; 2012.

    Google Scholar 

  68. Xu C, Arancon RD, Labidid J, Luque R. Lignin depolymerisation strategies- towards valuable chemicals and fuels. Chem Soc Rev. 2014;43:7485–500.

    Article  CAS  PubMed  Google Scholar 

  69. Xu W, Miller SJ, Agrawal PK, Jones CW. Depolymerization and hydrodeoxygenation of switchgrass lignin with formic acid. ChemSusChem. 2012;5:667–75.

    Article  CAS  PubMed  Google Scholar 

  70. Ye Y, Zhang Y, Fan J, Chang J. Selective production of 4-ethylphenolics from lignin via mild hydrogenolysis. Bioresour Technol. 2012;118:648–51.

    Article  CAS  PubMed  Google Scholar 

  71. Zhang J, Teo J, Chen X, Asakura H, Tanaka T, Teramura K, Yan N. A series of NiM (M = Ru, Rh, and Pd) bimetallic catalysts for effective lignin hydrogenolysis in water. ACS Catal. 2014;4:1574–83.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors greatly acknowledge the funding support from the projects supported by National Natural Science Foundation of China (Grant No. 51476034, 51525601, 51676047 and 51628601), National Basic Research Program of China (973 Program) (Grant No. 2012CB215306), and the Natural Science Foundation of Jiangsu Province (Grant No. BK20161423).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Xiao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Shen, D., Cheng, C., Liu, N., Xiao, R. (2016). Lignin Depolymerization (LDP) with Solvolysis for Selective Production of Renewable Aromatic Chemicals. In: Fang, Z., Smith, Jr., R. (eds) Production of Biofuels and Chemicals from Lignin. Biofuels and Biorefineries. Springer, Singapore. https://doi.org/10.1007/978-981-10-1965-4_10

Download citation

Publish with us

Policies and ethics