Skip to main content

Sustainable Utilization of Marine Algae Biomass for Environmental Bioremediation

  • Chapter
  • First Online:
Prospects and Challenges in Algal Biotechnology

Abstract

The rapid development of anthropogenic activities has a negative impact on the environment, due to the accumulation of harmful heavy metal ions pollutants. Biosorption on low-cost materials has been intensively studied in the last years, because they offer an efficient and cost-effective alternative to the conventional methods used for the environment decontamination. Thus, numerous utilizations of marine algae biomass have been developed for the efficient removal of heavy metal ions from aqueous environments. Unfortunately, such practical applications are not economic efficient. More advantages seem to be the utilization of marine algae biomass as feedstock for energy production. But, even if the obtaining of energy from marine algae is considered a ‘clean technology’, the valorization of algae waste resulted both after oil extraction and low temperature combustion is still important issue for which further solutions are sought. In this context, the utilization of such marine algae wastes as biosorbent for the removal of heavy metal ions from aqueous media; besides, that will ensure that the utilization of such materials in agreement with the principles of sustainable development will be also helpful in the environment bioremediation processes. In this chapter are comparatively presented the biosorptive performances of marine algae biomass and of wastes resulted from energy production for the removal of various heavy metals ions from aqueous media.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarwal M, Tardio J, Mohan SV (2015) Pyrolysis biochar from cellulosic municipal solid waste as adsorbent for azo dye removal: equilibrium isotherms and kinetics analysis. Int J Environ Sci Develop 69(1):67–72

    Article  Google Scholar 

  • Ahmady-Asbchin S, Andres Y, Gerente C, Le Cloirec P (2008) Biosorption of Cu(II) from aqueous sol by Fucus serratus: surface characterization and sorption mechanisms. Biores Technol 99:6150–6155

    Article  CAS  Google Scholar 

  • Ajjabi LC, Chouba L (2009) Biosorption of Cu2+ and Zn2+ from aqueous solutions by dried marine green macroalga Chaetomorpha linum. J Environ Manag 90:3485–3489

    Article  CAS  Google Scholar 

  • Akhtar N, Iqbal M, Zafar SI, Iqbal J (2008) Biosorption characteristics of unicellular green alga Chlorella sorokiniana immobilized in loofa sponge for removal of Cr(III). J Environ Sci 20:231–239

    Article  CAS  Google Scholar 

  • Aklil A, Mouflih M, Sebti S (2004) Removal of heavy metal ions from water by using calcined phosphate as a new adsorbent. J Hazard Mater A 112:183–190

    Article  CAS  Google Scholar 

  • Areco MM, Hanela S, Duran J, Afonso Mdos S (2012) Biosorption of Cu(II), Zn(II), Cd(II) and Pb(II) by dead biomasses of green alga Ulva lactuca and the development of a sustainable matrix for adsorption implementation. J Hazard Mater 213–214:123–132

    Article  PubMed  CAS  Google Scholar 

  • Asadullah M (2014) Barriers of commercial power generation using biomass gasification gas: a review. Renew Sustain Energy Rev 29:201–205

    Article  CAS  Google Scholar 

  • Azmir J, Zaidul ISM, Rahman MM, Sharif KM, Mohamed A, Sahena F, Jahurul MHA, Ghafoor K, Norulaini NAN, Omar AKM (2013) Techniques for extraction of bioactive compounds from plant materials: a review. J Food Eng 117:426–436

    Article  CAS  Google Scholar 

  • Aydin H, Bulut Y, Yerlikaya C (2008) Removal of copper (II) from aqueous solution by adsorption onto low-cost adsorbents. J Environ Manag 87:37–45

    Article  CAS  Google Scholar 

  • Badescu IS, Negrila L, Nacu G, Bulgariu L (2015) Removal of Cu(II) ions from aqueous solution by biosorption on marine algae biomass. Bull I.P.Iasi 61(2):57–66

    Google Scholar 

  • Bayramoğlu G, Tuzun I, Celik G, Yilmaz M, Arica MY (2006) Biosorption of mercury(II), cadmium(II) and lead(II) ions from aqueous system by microalgae Chlamydomonas reinhardtii immobilized in alginate beads. Miner Process 81(1):35–43

    Article  CAS  Google Scholar 

  • Bird MI, Wurster CM, de Paula Silva PH, Bass AM, de Nys R (2011) Algal biochar—production and properties. Biores Technol 102(2):1886–1891

    Article  CAS  Google Scholar 

  • Bishnoi NR, Kumar R, Kumar S, Rani S (2007) Biosorption of Cr(III) from aqueous solution using algal biomass spirogyra spp. J Hazard Mater 145:142–147

    Article  CAS  PubMed  Google Scholar 

  • Bixler HJ, Porse H (2011) A decade of change in the seaweed hydrocolloids industry. J Appl Phycol 23:321–335

    Article  Google Scholar 

  • Borghini F, Lucattini L, Focardi S, Focardi S, Bastianoni S (2014) Production of bio-diesel from macroalgae of the Orbetello lagoon by various extraction methods. Int J Sustain Energy 33(3):697–703

    Article  Google Scholar 

  • Bulgariu D, Bulgariu L (2012) Equilibrium and kinetics studies of heavy metal ions biosorption on green algae waste biomass. Biores Technol 103:489–493

    Article  CAS  Google Scholar 

  • Bulgariu D, Bulgariu L (2013) Sorption of Pb(II) onto a mixture of algae waste biomass and anion exchanger resin in a packed-bed column. Biores Technol 129:374–380

    Article  CAS  Google Scholar 

  • Bulgariu D, Bulgariu L (2016) Potential use of alkaline treated algae waste biomass as sustainable biosorbent for clean recovery of cadmium(II) from aqueous media: batch and column studies. J Clean Prod 112:4525–4533

    Article  CAS  Google Scholar 

  • Bulgariu L (2016) Removal of heavy metal ions by biosorption on marine algae biochar. Biores Technol (submitted for publication)

    Google Scholar 

  • Bulgariu L, Bulgariu D (2014) Enhancing biosorption characteristics of marine green algae (Ulva lactuca) for heavy metals removal by alkaline treatment. J Bioproc Biotechniq 4(1):1–6

    Article  Google Scholar 

  • Bulgariu L, Bulgariu D (2015) Algae waste biomass: a new class of low-cost material with potential applications in environmental engineering, chapter 33. In: Kim S-k, Chojnacka K (eds) Marine algae extracts: processes, products, and applications. Wiley-VCH Verlag GmbH & Co. KGaA, 722 pgs, pp 575–602. ISBN: 9783527337088

    Google Scholar 

  • Bulgariu L, Lupea M, Ciubota-Rosie C, Macoveanu M (2010) Possibility of using algae biomass for removing Pb(II) ions from aqueous solutions. Sci Pap J, Agron Ser 53(1):79–83

    Google Scholar 

  • Chekroun KB, Baghour M (2013) The role of algae in phytoremediation of heavy metals: a review. J Mater Environ Sci 4(6):873–880

    Google Scholar 

  • Chen Z, Ma W, Han M (2008) Biosorption of nickel and copper onto treated alga (Undaria pinnatifida): application of isotherm and kinetic models. J Hazard Mater 155:327–333

    Article  CAS  PubMed  Google Scholar 

  • Chojnacka K (2010) Biosorption and bioaccumulation—the prospects for practical applications. Environ Int 36:299–307

    Article  CAS  PubMed  Google Scholar 

  • Chong KH, Volesky B (1995) Description of two-metal biosorption equilibria by Langmuir-type models. Biotechnol Bioeng 47(4):451–460

    Article  CAS  PubMed  Google Scholar 

  • Cruz CCV, Costa CAC, Henriques CA, Luna AS (2004) Kinetic modeling and equilibrium studies during cadmium biosorption by dead Sargassum sp. biomass. Bioresour Technol 91(3):249–257

    Article  CAS  PubMed  Google Scholar 

  • Dabrowski A, Hubicki Z, Podkoscielny P, Robens E (2004) Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method. Chemosphere 56:91–106

    Article  CAS  PubMed  Google Scholar 

  • Davis TA, Volesky B, Mucci A (2003) A review of the biochemistry of heavy metal biosorption by brown algae. Water Res 37(18):4311–4330

    Article  CAS  PubMed  Google Scholar 

  • Dean JA (1995) Handbook of analytical chemistry. Mc-Grow Hill Inc., New York

    Google Scholar 

  • Delle A (2001) Factors affecting sorption of organic compounds in natural sorbent/ water systems and sorption coefficients for selected pollutants. A review. J Phys Chem Ref Data 30:187–439

    Article  CAS  Google Scholar 

  • Demirbas A, Karslioglu S (2007) Biodiesel production facilities from vegetable oils and animal fats. Energy Sources Part A 29:133–141

    Article  CAS  Google Scholar 

  • Demirbas A (2009) Future energy sources: part I. Future Energy Sources 1:1–95

    Google Scholar 

  • Demirbas A, Demirbas MF (2011) Importance of algae oil as a source of biodiesel. Energy Convers Manag 52:163–170

    Article  Google Scholar 

  • Deng L, Su Y, Su H, Wang X, Zhu X (2007) Sorption and desorption of lead (II) from wastewater by green algae Cladophora fascicularis. J Hazard Mater 143:220–225

    Article  CAS  PubMed  Google Scholar 

  • Dhankhar R, Hooda A (2011) Fungal biosorption—an alternative to meet the challenges of heavy metal pollution in aqueous solutions. Environ Technol 32:467–491

    Article  CAS  PubMed  Google Scholar 

  • Directive 2000/60/EC. Council Directive 2000/60/EC of the European Parliament and of the council establishing a framework for community action in the field of water policy. Off J Eur Communities L327/1 2000

    Google Scholar 

  • Domingues-Ramos A, Chavan K, Garcia V, Jimeno G, Albo J, Marathe KV, Yadav GD, Iraben A (2014) Arsenic removal from natural waters by adsorption or ion exchange: an environmental sustainability assessment. Ind Eng Chem Res 53(49):18920–18927

    Article  CAS  Google Scholar 

  • Doble M, Kumar A (2005) Biotreatment of industrial effluents. Department of Biotechnology I.I.T. Madras, Chennai, India and Department of Chemistry Sri Sathya Institute of Higher Learning, Deemed University

    Google Scholar 

  • Donmez G, Aksu Z, Ozturk A, Kutsalm T (1999) A comparative study on heavy metal biosorption characteristics of some algae. Process Biochem 34:885–892

    Article  CAS  Google Scholar 

  • Ebrahimi M, Panahi R, Dabbagh R (2009) Evaluation of native and chemically modified Sargassum glaucescens for continuous biosorption of Co(II). Appl Biochem Biotechnol 158(3):736–746

    Article  CAS  PubMed  Google Scholar 

  • El-Nerm A, El-Sikaily A, Khaled A, Abdelwahab O (2015) Removal of toxic chromium from aqueous solution, wastewater and saline water by marine red alga Pterocladia capillacea and its activated carbon. Arabian J Chem 8(1):105–117

    Article  CAS  Google Scholar 

  • El-Sikaily A, El-Nemr A, Khaled A, Abdelwehab O (2007) Removal of toxic chromium from wastewater using green alga Ulva lactuca and its activated carbon. J Hazard Mater 148:216–228

    Article  CAS  PubMed  Google Scholar 

  • Esposito A, Pagnanelli F, Veglio F (2002) pH-related equilibria models for biosorption in single-metal systems. Chem Eng Sci 57:307–313

    Article  CAS  Google Scholar 

  • Farooq U, Kozinski JA, Khan MA, Athar M (2010) Biosorption of heavy metal ions using wheat based biosorbents—a review of the recent literature. Biores Technol 101:5043–5053

    Article  CAS  Google Scholar 

  • Febrianto J, Kosasih AN, Sunarso J, Ju YH, Indrawati N, Ismadji S (2009) Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: a summary of recent studies. J Hazard Mater 162:616–645

    Article  CAS  PubMed  Google Scholar 

  • Finocchio E, Lodi A, Solisio C, Converti A (2010) Chromium (VI) removal by methylated biomass of Spirulina platensis: the effect of methylation process. Chem Eng J 156(2):264–269

    Article  CAS  Google Scholar 

  • Freitas OMM, Martins RJE, Delerue-Matos CM, Boaventura RAR (2008) Removal of Cd(II), Zn(II) and Pb(II) from aqueous solutions by brown marine macro algae: kinetic modelling. J Hazard Mater 153:493–501

    Article  CAS  PubMed  Google Scholar 

  • Gardea-Torresdey JL, Becker-Hapak MK, Hosea JM, Darnall DW (1990) Effect of chemical modification of algal carboxyl groups on metal ion binding. Environ Sci Technol 24:1372–1378

    Article  CAS  Google Scholar 

  • Gerente C, Lee VCK, Le Cloirec P, McKay G (2007) Application of chitosane removal of metals from wastewaters by adsorption—mechanisms and model review. Crit Rev Environ Sci Technol 37:41–127

    Article  CAS  Google Scholar 

  • Gokhale SV, Jyoti KK, Lele SS (2008) Kinetic and equilibrium modeling of chromium (VI) biosorption on fresh and spent Spirulina platensis/Chlorella vulgaris biomass. Bioresour Technol 99(9):3000–3008

    Article  CAS  Google Scholar 

  • Gupta V, Rastogi A (2008) Equilibrium and kinetic modelling of cadmium (II) biosorption by nonliving algal biomass Oedogonium sp. from aqueous phase. J Hazard Mater 153(1):759–766

    Article  CAS  PubMed  Google Scholar 

  • Gupta VK, Rastogi A, Nayak A (2010) Biosorption of nickel onto treated alga (Oedogonium hatei): application of isotherm and kinetic models. J Colloid Interface Sci 342(2):533–539

    Article  CAS  PubMed  Google Scholar 

  • Hackbarth FV, Maass D, de Souza AA, Vilar VJP, de Souza SMA (2016) Removal of hexavalent chromium from electroplating wastewaters using marine macroalga Pelvetia canaliculata as natural electron donor. Chem Eng J 290:477–489

    Article  CAS  Google Scholar 

  • Halim R, Gladman B, Danquah MK, Webley PA (2011) Oil extraction from microalgae for biodiesel production. Biores Technol 102(1):178–185

    Article  CAS  Google Scholar 

  • Hamdy AA (2000) Biosorption of heavy metals by marine algae. Curr Microbiol 41:232–238

    Article  CAS  PubMed  Google Scholar 

  • Han R, Li HY, Zhang J, Xiao H, Shi J (2006a) Biosorption of copper and lead ions by waste beer yeast. J Hazard Mater 137:1569–1576

    Article  CAS  PubMed  Google Scholar 

  • Han X, Wong YS, Tam NF (2006b) Surface complexation mechanism and modeling in Cr(III) biosorption by a microalgal isolate, Chlorella miniata. J Colloid Interface Sci 303(2):365–371

    Article  CAS  PubMed  Google Scholar 

  • Heidenreich S, Foscolo PU (2015) New concepts in biomass gasification. Proc Energy Combust Sci 46:72–95

    Article  Google Scholar 

  • Herrero R, Cordero B, Lodeiro P, Rey-Castro C, Sastre de Vicente ME (2006) Interactions of cadmium(II) and protons with dead biomass of marine algae Fucus sp. Marine Chem 99:106–116

    Article  CAS  Google Scholar 

  • Ho YS (2006) Second-order kinetic model for the sorption of cadmium onto tree fern: a comparison of linear and non-linear methods. Water Res 40:119–125

    Article  CAS  PubMed  Google Scholar 

  • Ho YS, Wase DAJ, Forster CF (1996) Removal of lead ions from aqueous solution using sphagnum moss peat as adsorbent. Water SA 22:219–224

    CAS  Google Scholar 

  • Ibrahim WM (2011) Biosorption of heavy metal ions from aqueous solution by red macroalgae. J Hazard Mater 192:1827–1835

    Article  CAS  PubMed  Google Scholar 

  • Inyang MI, Gao B, Yao Y, Xue Y, Zimmerman A, Mosa A, Pullammanappallil P, Ok YS, Cao X (2016) A review of biochar as a low-cost adsorbent for aqueous heavy metal removal. Crit Rev Environ Sci Technol 46(4):406–433

    Article  CAS  Google Scholar 

  • Jha B, Basha S, Jaiswar S, Mishra B, Thakur MC (2009) Biosorption of Cd(II) and Pb(II) onto brown seaweed, Lobophora variegata (Lamouroux): kinetic and equilibrium studies. Biodegradation 20:1–13

    Article  CAS  PubMed  Google Scholar 

  • Johansson CL, Paul NA, de Nys R, Roberts DA (2016) Simultaneous biosorption of selenium, arsenic and molybdenum with modified algal-based biochars. J Environ Eng 165(1):117–123

    CAS  Google Scholar 

  • Jung KA, Lim SR, Kim Y, Park JM (2013) Potentials of macroalgae as feedstock for biorefinery. Biores Technol 135:182–190

    Article  CAS  Google Scholar 

  • Jung KW, Hwang MJ, Jeong TU, Ahn KH (2015) A novel approach for preparation of modified-biochar derived from marine macroalgae: dual purpose electro-modification for improvement of surface area and metal impregnation. Biores Technol 191:342–345

    Article  CAS  Google Scholar 

  • Kalyani S, Srinivasa Rao P, Krishnaiah A (2004) Removal of nickel (II) from aqueous solutions using marine macroalgae as the sorbing biomass. Chemosphere 57:1225–1229

    Article  CAS  PubMed  Google Scholar 

  • Karthikeyan S, Balasubramanian R, Iyer CSP (2007) Evaluation of the marine algae Ulva fasciata and Sargassum sp. for the biosorption of Cu(II) from aqueous solutions. Biores Technol 98:452–455

    Article  CAS  Google Scholar 

  • Kayalvizhi K, Vijayaraghavan K, Velan M (2015) Biosorption of Cr(VI) using a novel microalga Rhizoclonium hookeri: equilibrium, kinetics and thermodynamic studies. Desalin Water Treat 56(1):194–203

    Article  CAS  Google Scholar 

  • Kim BS, Lee HW, Park SH, Baek K, Jeon JK, Cho HJ, Jung SC, Kim SC, Park YK (2016) Removal of Cu2+ by biochars derived from green macroalgae. Environ Sci Poll Res 23(2):985–994

    Article  CAS  Google Scholar 

  • Kumar YP, King P, Prasad VSRK (2006) Comparison for adsorption modelling of copper and zinc from aqueous solution by Ulva fasciata sp. J Hazard Mater B137:1246–1251

    Article  CAS  Google Scholar 

  • Kumar YP, King P, Prasad VSRK (2007) Adsorption of zinc from aqueous solution using marine green algae-Ulva fasciata sp. Chem Eng J 129:161–166

    Article  CAS  Google Scholar 

  • Kurniawan TA, Chan GYS, Lo W, Babel S (2006) Comparisons of low-cost adsorbents for treating wastewaters laden with heavy metals. Sci Total Environ 366:409–426

    Article  CAS  PubMed  Google Scholar 

  • Kushwaha S, Sreedhar B, Sudhakar PP (2012) A spectroscopic study for understanding the speciation of Cr on palm shell based adsorbents and their application for the remediation of chrome plating effluents. Biores Technol 116:15–23

    Article  CAS  Google Scholar 

  • Lamaia C, Kruatrachuea M, Pokethitiyooka P, Upathamb ES, Soonthornsarathoola V (2005) Toxicity and accumulation of lead and cadmium in the filamentous green alga Cladophora fracta (OF Muller ex Vahl) Kutzing: a laboratory study. Sci Asia 31(2):121–127

    Article  Google Scholar 

  • Lan W, Chen G, Zhu X, Wang X, Xu B (2015) Progress in techniques of biomass conversion into syngas. J Energy Inst 88(2):151–156

    Article  CAS  Google Scholar 

  • Lee YC, Chang SP (2011) The biosorption of heavy metals from aqueous solution by Spirogyra and Cladophora filamentous macroalgae. Biores Technol 102:5297–5304

    Article  CAS  Google Scholar 

  • Lesmana SO, Febriana N, Soetaredjo FE, Sunarso J, Ismadji S (2009) Studies on potential applications of biomass for the separation of heavy metals from water and wastewater. Biochem Eng J 44:9–41

    Article  CAS  Google Scholar 

  • Llanos J, Williams PM, Cheng S, Rogers D, Wright C, Perez A, Canizares P (2010) Characterization of a ceramic ultrafiltration membrane in different operational states after its use in a heavy-metal ion removal process. Water Res 44:3522–3530

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Chang X, Guo Y, Meng S (2006) Biosorption and preconcentration of lead and cadmium on waste Chinese herb Pang Da Hai. J Hazard Mater 135(1–3):389–394

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Cao Q, Luo F, Chen J (2009) Biosorption of Cd2+, Cu2+, Ni2+ and Zn2+ ions from aqueous solutions by pretreated biomass of brown algae. J Hazard Mater 163:931–938

    Article  CAS  PubMed  Google Scholar 

  • Lodeiro P, Cordero B, Barriada JL, Herrero R, Sastre de Vicente ME (2005) Biosorption of cadmium by biomass of brown marine macroalgae. Biores Technol 96:1796–1803

    Article  CAS  Google Scholar 

  • Lodeiro P, Barriada JL, Herrero R, Sastre de Vicente ME (2006) The marine macroalga Cystoseira baccata as biosorbent for cadmium(II) and lead(II) removal: kinetic and equilibrium studies. Environ Pollut 142(2):264–273

    Article  CAS  PubMed  Google Scholar 

  • Long Y, Lei D, Ni J, Ren Z, Chen C, Xu H (2014) Packed bed column studies on lead(II) removal from industrial wastewater by modified Agaricus bisporus. Biores Technol 152:457–463

    Article  CAS  Google Scholar 

  • Lupea M, Bulgariu L, Macoveanu M (2012a) Biosorption of Cd(II) from aqueous solutions on marine algae biomass. Environ Eng Manag J 11(3):607–615

    CAS  Google Scholar 

  • Lupea M, Bulgariu L, Macoveanu M (2012b) Adsorption of Cobalt(II) from aqueous solution using marine green algae—Ulva Lactuca sp. Bull I.P. Iasi 58(1):41–47

    Google Scholar 

  • Lyer A, Mody K, Jha BK (2005) Biosorption of heavy metals by a marine bacterium. Marine Poll 50:175–179

    Article  CAS  Google Scholar 

  • Maddi B, Vianajala S, Varanasi S (2011) Comparative study of pyrolysis of algal biomass from natural lake blooms with lignocellulosic biomass. Biores Technol 102(23):11018–11026

    Article  CAS  Google Scholar 

  • Marques PASS, Rosa MF, Pinheiro HM (2000) pH effects on the removal of Cu+2, Cd2+ and Pb2+ from aqueous solution by waste brewery biomass. Bioproc Eng 23:135–141

    Article  CAS  Google Scholar 

  • Martins RJE, Pardo R, Boaventura RAR (2004) Cadmium (II) and zinc (II) adsorption by the aquatic moss Fontinalis antipyretica: effect of temperature, pH and water hardness. Water Res 38(3):693–699

    Article  CAS  PubMed  Google Scholar 

  • Mata YN, Blazquez ML, Ballester A, Gonzalez F, Munoz JA (2008) Characterization of the biosorption of cadmium, lead and copper with the brown alga Fucus vesiculosus. J Hazard Mater 158:316–323

    Article  CAS  PubMed  Google Scholar 

  • Maul GA, Kim Y, Amini A, Zhang Q, Boyer TH (2014) Efficiency and life cycle environmental impacts of ion-exchange regeneration using sodium, potassium, chloride, and bicarbonate salts. Chem Eng J 254:198–209

    Article  CAS  Google Scholar 

  • Meena AK, Mishra GK, Rai PK, Rajagopal C, Nagar PN (2005) Removal of heavy metal ions from aqueous solutions using carbon aerogel as an adsorbent. J Hazard Mater 122(1–2):161–170

    Article  CAS  PubMed  Google Scholar 

  • Mehta S, Singh A, Gaur J (2002) Kinetics of adsorption and uptake of Cu2+ by Chlorella vulgaris: influence of pH, temperature, culture age, and cations. J Environ Sci Health Part A Toxic/Hazard Subst Environ Eng 37(3):399–414

    Article  CAS  Google Scholar 

  • Mehta SK, Gaur JP (2005) Use of algae for removing heavy metal ions from wastewater: progress and prospects. Critical Rev Biotechnol 25:113–152

    Article  CAS  Google Scholar 

  • Mohan D, Sarswat A, Ok YS, Pittman CU Jr (2014) Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent—a critical review. Bioresour Technol 160:191–202

    Article  CAS  PubMed  Google Scholar 

  • Montazer-Rahmati MM, Rabbani P, Abdolali A, Keshtkar AR (2011) Kinetics and equilibrium studies on biosorption of cadmium, lead, and nickel ions from aqueous solutions by intact and chemically modified brown algae. J Hazard Mat 185:401–407

    Article  CAS  Google Scholar 

  • Monteiro C, Castro PL, Malcata FX (2010) Cadmium removal by two strains of Desmodesmus pleiomorphus Cells. Water Air Soil Pollut 208(1–4):17–27

    Article  CAS  Google Scholar 

  • Murphy V, Hughes H, McLoughlin P (2008) Comparative study of chromium biosorption by red, green and brown seaweed biomass. Chemosphere 70:1128–1134

    Article  CAS  PubMed  Google Scholar 

  • Pahlavanzadeh H, Keshtkar AR, Safdari J, Abadi Z (2010) Biosorption of nickel(II) from aqueous solution by brown algae: equilibrium, dynamic and thermodynamic studies. J Hazard Mater 175:304–310

    Article  CAS  PubMed  Google Scholar 

  • Park D, Yun YS, Park JM (2010) The past, present, and future trends of biosorption. Biotechnol Bioprocess Eng 15:86–102

    Article  CAS  Google Scholar 

  • Park SH, Cho HJ, Ryu C, Park YK (2016) Removal of copper(II) in aqueous solution using pyrolytic biochars derived from red macroalga Porphyra tenera. J Ind Eng Chem 36:314–319

    Article  CAS  Google Scholar 

  • Patel B, Guo M, Izadpanah A, Shah N, Hellgardt K (2016) A review on hydrothermal pre-treatment technologies and environmental profiles of algal biomass processing. Bioresour Technol 199:288–299

    Article  CAS  PubMed  Google Scholar 

  • Qin F, Wen B, Shan X, Xie Y, Liu T, Zhang S, Khan S (2006) Mechanisms of competitive adsorption of Pb, Cu, and Cd on peat. Environ Pollut 144:669–680

    Article  CAS  PubMed  Google Scholar 

  • Rangabhashiyam S, Anu N, Nandagopal Giri MS, Selvaraju N (2014) Relevance of isotherm models in biosorption of pollutants by agricultural byproducts. J Environ Chem Eng 2(1):398–414

    Article  CAS  Google Scholar 

  • Rangsayatorn N, Upatham E, Kruatrachue M, Pokethitiyook P, Lanza G (2002) Phytoremediation potential of Spirulina (Arthrospira) platensis: biosorption and toxicity studies of cadmium. Environ Pollut 119(1):45–53

    Article  CAS  Google Scholar 

  • Ripoll N, Silvestre C, Paredes E, Toledo M (2016) Hydrogen production from algae biomass in rich natural gas-air filtration combustion. Int J Hydrogen Energy (in press)

    Google Scholar 

  • Robals A, Naja GM, Klavins M (2016) Highlighting inconsistencies regarding metal biosorption. J Hazard Mater 304:553–556

    Article  CAS  Google Scholar 

  • Romanian legislation: NTPA 002/ 2005. http://www.gnm.ro/otherdocs/nsbhrtjqp.pdf

  • Romera E, Gonzalez F, Ballester A, Blazquez ML, Munoz JA (2007) Comparative study of biosorption of heavy metals using different types of algae. Biores Technol 98:3344–3353

    Article  CAS  Google Scholar 

  • Sari A, Tuzen M (2008a) Biosorption of Pb(II) and Cd(II) from aqueous solution using green alga (Ulva lactuca) biomass. J Hazard Mater 152:302–308

    Article  CAS  PubMed  Google Scholar 

  • Sarı A, Tuzen M (2008) Biosorption of cadmium(II) from aqueous solution by red algae (Ceramium virgatum): equilibrium, kinetic and thermodynamic studies. J Hazard Mater 157:448–454

    Article  PubMed  CAS  Google Scholar 

  • Sari A, Tuzen M (2008b) Biosorption of total chromium from aqueous solution by red algae (Ceramium virgatum): equilibrium, kinetic and thermodynamic studies. J Hazard Mater 160:349–355

    Article  CAS  PubMed  Google Scholar 

  • Sims REH, Mabee W, Saddler JN, Taylor M (2010) An overview of second generation biofuel technologies. Bioresour Technol 101:1570–1580

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Singh Nigam P, Murphy JD (2011) Renewable fuels from algae: an answer to debatable land based fuels. Biores Technol 102(1):10–16

    Article  CAS  Google Scholar 

  • Singh R, Chadetrik R, Kumar R, Bishnoi K, Bhatia D, Kumar A, Bishnoi NR, Singh N (2010) Biosorption optimization of lead (II), cadmium (II) and copper (II) using response surface methodology and applicability in isotherms and thermodynamics modeling. J Hazard Mater 174(1–3):623–634

    Article  CAS  PubMed  Google Scholar 

  • Tsezos M, Volesky B (1981) Biosorption of uranium and thorium. Biotechnol Bioeng 23:583–604

    Article  CAS  Google Scholar 

  • Tuhy L, Samorj M, Michalak I, Chojnacka K (2014) The application of biosorption for production of micronutrient fertilizers based on waste biomass. Appl Biochem Biotechnol 174:1376–1392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ucun H, Bayhan YK, Kaya Y, Cakici A, Algur OF (2003) Biosorption of lead (II) from aqueous solution by cone biomass of Pinus sylvestris. Desalination 154(3):233–238

    Article  CAS  Google Scholar 

  • Uzunoğlu D, Gur N, Özkaya N, Ozer A (2014) The single batch biosorption of copper (II) ions on Sargassum acinarum. Desalin Water Treat 52:1514–1523

    Article  CAS  Google Scholar 

  • Vilar VJP, Botelho CMS, Boaventura RAR (2006) Equilibrium and kinetic modelling of Cd(II) biosorption by algae Gelidium and agar extraction algal waste. Water Res 40:291–302

    Article  CAS  PubMed  Google Scholar 

  • Volesky B (1987) Biosorbents for metal recovery. Trends Biotechnol 5:96–101

    Article  CAS  Google Scholar 

  • Zakhama S, Dhaouadi H, M’Henni F (2011) Nonlinear modelisation of heavy metal removal from aqueous solution using Ulva lactuca algae. Biores Technol 102:786–796

    Article  CAS  Google Scholar 

  • Wang J, Chen C (2009) Biosorbents for heavy metals removal and their future. Biotechnol Adv 27:195–226

    Article  PubMed  CAS  Google Scholar 

  • Wang JL (2002) Biosorption of copper (II) by chemically modified biomass of Saccharomyces cerevisiae. Process Biochem 37:847–850

    Article  CAS  Google Scholar 

  • Wang XS, Li ZZ, Sun C (2009) A comparative study of removal of Cu(II) from aqueous solutions by locally low-cost materials: marine macroalgae and agricultural by-products. Desalination 235:146–159

    Article  CAS  Google Scholar 

  • Xie Y, Li H, Wang X, Ng IS, Lu Y, Jing K (2014) Kinetic simulating of Cr(VI) removal by the waste Chlorella vulgaris biomass. J Taiwan Inst Chem Eng 45(4):1773–1782

    Article  CAS  Google Scholar 

  • Yaqub A, Mughal M, Adnan A, Khan W, Anjum K (2012) Biosorption of hexavalent chromium by Spirogyra spp.: equilibrium, kinetics and thermodynamics. J Anim Plant Sci 22:408–415

    CAS  Google Scholar 

  • Yeh KL, Chang JS (2012) Effects of cultivation conditions and media composition on cell growth and lipid productivity of indigenous microalga Chlorella vulgaris ESP-31. Biores Technol 105:120–127

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This study was elaborated with the support of a grant of the Roumanian National Authority for Scientific Research, CNCS—UEFISCDI, project number PN-III-P4-ID-PCE-2016-0500, Contract 41/2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Bulgariu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bulgariu, L., Bulgariu, D. (2017). Sustainable Utilization of Marine Algae Biomass for Environmental Bioremediation. In: Tripathi, B., Kumar, D. (eds) Prospects and Challenges in Algal Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-10-1950-0_6

Download citation

Publish with us

Policies and ethics