Skip to main content

Dynamic Modeling of Microalgal Production in Photobioreactors

  • Chapter
  • First Online:
Prospects and Challenges in Algal Biotechnology

Abstract

In this chapter, dynamic models for microalgal production in open and closed photobioreactors are presented. These models are first principle-based models, which take into account both spatial and temporal gradients for the main culture variables. Both fluid dynamics and biological phenomena are considered in the model equations. Calibration and validation tests are summarized in real open and closed tubular industrial photobioreactors, obtaining successful results. Finally, in view of the obtained results, conclusions about the capabilities of the developed models are drawn, as well as its main uses and applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acién F, Fernández JM, Molina E (2013) Photobioreactors for the production of microalgae. Rev Environ Sci BioTechnol 12(2):131–151

    Article  Google Scholar 

  • Acién F, Fernández JM, Molina-Grima E (2013) Economics of microalgae biomass production. Biofuels from Algae 14:313–325

    Google Scholar 

  • Acién F, García F, Sánchez J, Fernández J, Molina E (1998) Modelling of biomass productivity in tubular photobioreactors for microalgal cultures: effects of dilution rate, tube diameter and solar irradiance. Biotechnol Bioeng 58(6):605–616

    Article  Google Scholar 

  • Acién FG, Fernández JM, Molina-Grima E (2013) Photobioreactors for the production of microalgae. Rev Environ Sci Biotechnol 12:1–21

    Article  Google Scholar 

  • Acién FG, Fernández JM, Sánchez JA, Molina E, Chisti Y (2001) Airlift-driven external-loop tubular photobioreactors for outdoor production of microalgae: assessment of design and performance. Chem Eng Sci 56(8):2721–2732

    Article  Google Scholar 

  • Acién FG, García F, Chisti Y (1999) Photobioreactors: light regime, mass transfer, and scaleup. Prog Ind Microbiol 35:231–247

    Article  Google Scholar 

  • Acién FG, García F, Sánchez JA, Fernández JM, Molina E (1997) A model for light distribution and average solar irradiance inside outdoor tubular photobioreactors for the microalgal mass culture. Biotechnol Bioeng 55:701–714

    Article  Google Scholar 

  • de Andrade G, Berenguel M, Guzmán JL, Pagano D, Acién F (2016) Optimization of biomass production in outdoor tubular photobioreactors. J Process Control 37:58–69

    Article  Google Scholar 

  • Berenguel M, Rodríguez F, Acién FG, García JL (2004) Model predictive control of pH in tubular photobioreactors. J Process Control 14:377–387

    Article  CAS  Google Scholar 

  • Bernard O (2011) Hurdles and challenges for modelling and control of microalgae for \(\text{CO}_{2}\) mitigation and biofuel production. J Process Control 21(10):1378–1389

    Google Scholar 

  • Camacho F, Acién FG, Sánchez JA, García F, Molina E (1999) Prediction of dissolved oxygen and carbon dioxide concentration profiles in tubular photobioreactors for microalgal culture. Biotechnol Bioeng 62:71–86

    Article  PubMed  Google Scholar 

  • Chisti MY, Moo-Young M (1987) Airlift reactors: characteristics, applications and design considerations. Chem Eng Commun 60(1–6):195–242

    Article  CAS  Google Scholar 

  • Concasa A, Pisua M, Caoa G (2010) Novel simulation model of the solar collector of biocoil photobioreactors for co2 sequestration with microalgae. Chem Eng J 157:297–303

    Article  Google Scholar 

  • Costache TA, Acién FG, Morales MM, Fernández-Sevilla JM, Stamatin I, Molina E (2013) Comprehensive model of microalgae photosynthesis rate as a function of culture conditions in photobioreactors. Appl Microbiol Biotechnol 97:7627–7637

    Article  CAS  PubMed  Google Scholar 

  • Fernández I, Acién F, Berenguel M, Guzmán JL (2014) First principles model of a tubular photobioreactor for microalgal productio. Ind Eng Chem Res 53:11–121, 27:11–136

    Google Scholar 

  • Fernández I, Acién FG, Fernández JM, Guzmán JL, Magán JJ, Berenguel M (2012) Dynamic model of microalgal production in tubular photobioreactors. Bioresour Technol 126:172–181

    Article  PubMed  Google Scholar 

  • Fernández I, Acién FG, Guzmán JL, Berenguel M, Mendoza JL (2016) First principles model of a tubular photobioreactor for microalgal productio. Algal Res 17:67–78

    Article  Google Scholar 

  • García JL, Berenguel M, Rodríguez F, Fernández Sevilla JM, Brindley Alias C, Acién FG (2003) Minimization of carbon losses in pilot-scale outdoor photobioreactors by model-based predictive control. Biotechnol Bioeng 84:533–543

    Article  Google Scholar 

  • de Godos I, Mendoza JL, Acién FG, Molina E, Banks CJ, Heaven S, Rogalla F (2014) Evaluation of carbon dioxide mass transfer in raceway reactors for microalgae culture using flue gases. Bioresour Technol 153:307–314

    Article  PubMed  Google Scholar 

  • Guterman H, Vonshak A, Ben-Yaakov S (1990) A macromodel for outdoor algal mass production. Biotechnol Bioeng 35:809–819

    Article  CAS  PubMed  Google Scholar 

  • James SC, Boriah V (2010) Modeling algae growth in an open-channel raceway. J Comput Biol 17:895–906

    Article  CAS  PubMed  Google Scholar 

  • Jupsin H, Praet E, Vasel J (2003) Dynamic mathematical model of high rate algal ponds (HRAP). Water Sci Technol 48:197–204

    CAS  PubMed  Google Scholar 

  • Kittler R, Darula S (2013) Determination of time and sun position system. Sol Energ 93:72–79

    Article  Google Scholar 

  • Koller M, Muhr A, Braunegg G (2014) Microalgae as versatile cellular factories for valued products. Algal Res 6:52–63

    Article  Google Scholar 

  • Marquez FJ, Sasaki K, Nishio N, Nagai S (1995) Inhibitory effect of oxygen accumulation on the growth of spirulina platensis. Biotechnol Lett 17:225–228

    Article  CAS  Google Scholar 

  • Mendoza JL, Granados MR, de Godos I, Acién FG, Molina E, Banks C, Heaven S (2013a) Fluid-dynamic characterization of real-scale raceway reactors for microalgae production. Biomass Bioenerg 54:267–275

    Google Scholar 

  • Mendoza JL, Granados MR, de Godos I, Acién FG, Molina E, Heaven S, Banks CJ (2013b) Oxygen transfer and evolution in microalgal culture in open raceways. Bioresour Technol 137:188–195

    Google Scholar 

  • Molina E, Fernández J, Acién FG, Chisti Y (2001) Tubular photobioreactor design for algal cultures. J Biotechnol 92(2):113–131

    Article  CAS  PubMed  Google Scholar 

  • Molina E, Fernández Sevilla JM, Sánchez Pérez JA, García Camacho F (1996a) A study on simultaneous photolimitation and photoinhibition in dense microalgal cultures taking into account incident and averaged irradiances. J Biotechnol 45:59–69

    Google Scholar 

  • Molina E, García F, Sánchez JA, Acién FG, Fernández JM (1996b) Growth yield determination in a chemostat culture of the marine microalgaisochrysis galbana. J Appl Phycol 8(6):529–534

    Google Scholar 

  • Molina E, Sánchez JA, García F, Robles A (1993) Gas-liquid transfer of atmospheric CO\(_{2}\) in microalgal cultures. J Chem Technol Biotechnol 56(4):329–337

    Google Scholar 

  • Molina E, Sevilla JM, Pérez JA, Camacho FG (1996) A study on simultaneous photolimitation and photoinhibition in dense microalgal cultures taking into account incident and averaged irradiances. J Biotechnol 45(1):59–69

    Article  Google Scholar 

  • Norsker N, Barbosa MJ, Vermuë MH, Wijffels RH (2011) Microalgal production—a close look at the economics. Biotechnol Adv 29:(24–27)

    Google Scholar 

  • Posten C (2009) Design principles of photo-bioreactors for cultivation of microalgae. Eng Life Sci 9:165–177

    Article  CAS  Google Scholar 

  • Sánchez JF, Fernández JM, Acién FG, Cerón MC, Pérez J, Molina E (2008a) Biomass and lutein productivity of scenedesmus almeriensis: influence of irradiance, dilution rate and temperature. Appl Microbiol Biotechnol 79(5):719–729

    Google Scholar 

  • Sánchez JF, Fernández JM, Acién FG, Rueda A, Pérez J, Molina E (2008b) Influence of culture conditions on the productivity and lutein content of the new strain Scenedesmus almeriensis. Process Biochem 43(4):398–405

    Google Scholar 

  • Singh DP, Singh N, Verma K (1995) Photooxidative damage to the cyanobacterium spirulina platensis mediated by singlet oxygen. Curr Microbiol 31:44–48

    Google Scholar 

  • Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96

    Article  CAS  PubMed  Google Scholar 

  • Stepan D, Shockey R, Moe T, Dorn R (2002) Carbon dioxide sequestering using microalgae systems. US department of energy, Pittsburgh, PA, US FC26-98FT 40320

    Google Scholar 

  • Vonshak A (1997) Spirulina: growth, physiology and biochemistry. In: Vonhask (ed) spirulina platensis (arthrospira): physiology, cell-biology and biotechnology. London:Taylor and Francis (43–65)

    Google Scholar 

  • Weissman JC, Goebel R, Benemann JR (1988) Photobioreactor design: mixing, carbon utilization, and oxygen accumulation. Biotechnol Bioeng 31:336–344

    Article  CAS  PubMed  Google Scholar 

  • Xin L, Hong-Ying H, Ke G, Ying-Xue S (2010) Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp. Bioresour Technol 101:5494–5500

    Article  CAS  PubMed  Google Scholar 

  • Zuber N, Findlay JA (1965) Average volumetric concentration in two-phase flow systems. J Heat Transfer 87(4):453–468

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been partially funded by the following projects: DPI2014-55932-C2-1-R (Spanish Ministry of Ecomony and Competitiveness and FEDER funds); EDARSOL CTQ2014-57293-C3 (Spanish Ministry of Science and Innovation); PURALGA RTA2013-0056-C03 (INIA), and supported by Cajamar Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. L. Guzmán .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fernández, I., Guzmán, J.L., Berenguel, M., Acién, F.G. (2017). Dynamic Modeling of Microalgal Production in Photobioreactors. In: Tripathi, B., Kumar, D. (eds) Prospects and Challenges in Algal Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-10-1950-0_2

Download citation

Publish with us

Policies and ethics