Advertisement

Retraction Phase Analysis of a Pumping Kite Wind Generator

  • Adrian Gambier
Chapter
Part of the Green Energy and Technology book series (GREEN)

Abstract

Airborne wind energy systems have developed very fast in the past five years. One of the most promising systems is the so called pumping kite wind generator, which is based on a cycle of two phases: the traction or generation phase and the retraction or consumption phase. An optimal balance between both phases is crucial in order to obtain an economically viable system. This work is devoted to the investigation of the retraction phase, i.e. the reel-in phase of a pumping kite wind generator, from the theoretical point of view. The most common approaches for the implementation of the retraction phase in the literature are studied from the point of view of the energy as well as time consumption. The first step of this work is the modeling of the dynamic behavior of the system during the tether reel-in process including the aerodynamic coefficients of a ram-air kite and by performing computational simulations. Perfect control is supposed. Hence, assumed that the control system shows its best performance, results of performed simulation experiments confirm that the behavior of the retraction phase is ruled by the system dynamics. The net energy gain of the complete cycle particularly depends on the efficiency of the retraction phase.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The author acknowledges the funding provided by the Federal Ministry of Economic Affairs and Energy (BMWi) through the project OnKites II, with funding code 0325394A [12].

References

  1. 1.
    Argatov, I., Rautakorpi, P., Silvennoinen, R.: Estimation of the mechanical energy output of the kite wind generator. Renewable Energy 34(6), 1525–1532 (2009).  https://doi.org/10.1016/j.renene.2008.11.001
  2. 2.
    Argatov, I., Silvennoinen, R.: Energy conversion efficiency of the pumping kite wind generator. Renewable Energy 35(5), 1052–1060 (2010).  https://doi.org/10.1016/j.renene.2009.09.006
  3. 3.
    Canale, M., Fagiano, L., Milanese, M.: High Altitude Wind Energy Generation Using Controlled Power Kites. IEEE Transactions on Control Systems Technology 18(2), 279–293 (2010).  https://doi.org/10.1109/TCST.2009.2017933
  4. 4.
    Canale, M., Fagiano, L., Ippolito, M., Milanese, M.: Control of tethered airfoils for a new class of wind energy generator. In: Proceedings of the 45th IEEE Conference on Decision and Control, pp. 4020–4026, San Diego, CA, USA (2006).  https://doi.org/10.1109/CDC.2006.376775
  5. 5.
    Cherubini, A., Papini, A., Vertechy, R., Fontana, M.: Airborne Wind Energy Systems: A review of the technologies. Renewable and Sustainable Energy Reviews 51, 1461–1476 (2015).  https://doi.org/10.1016/j.rser.2015.07.053
  6. 6.
    Diehl, M.: Real-time optimization for large scale nonlinear processes. Ph.D. Thesis, University of Heidelberg, 2001. http://archiv.ub.uni-heidelberg.de/volltextserver/1659/
  7. 7.
    Fagiano, L.: Control of tethered airfoils for high-altitude wind energy generation. Ph.D. Thesis, Politecnico di Torino, 2009. http://hdl.handle.net/11311/1006424
  8. 8.
    Fletcher, C. A. J., Honan, A. J., Sapuppo, J. S.: Aerodynamic platform comparison for jetstream electricity generation. Journal of Energy 7(1), 17–23 (1983).  https://doi.org/10.2514/3.48063
  9. 9.
    Fletcher, C. A. J., Roberts, B. W.: Electricity generation from jet-stream winds. Journal of Energy 3(4), 241–249 (1979).  https://doi.org/10.2514/3.48003
  10. 10.
    Gambier, A.: Projekt OnKites : Untersuchung zu den Potentialen von Flugwindenergieanlagen (FWEA). Final Project Report, Fraunhofer Institute for Wind Energy and Energy System Technology IWES, Bremerhaven, Germany, 2014. 155 pp.  https://doi.org/10.2314/GBV:81573428X
  11. 11.
    Gambier, A.: Recovery Phase Analysis of a Pumping Kite Wind Generator. In: Schmehl, R. (ed.). Book of Abstracts of the International Airborne Wind Energy Conference 2015, p. 60, Delft, The Netherlands, 15–16 June 2015.  https://doi.org/10.4233/uuid:7df59b79-2c6b-4e30-bd58-8454f493bb09. Presentation video recording available from: https://collegerama.tudelft.nl/Mediasite/Play/88ad32b769b14033bee3fc734bdaf32d1d
  12. 12.
    Gambier, A., Bastigkeit, I., Nippold, E.: Projekt OnKites II : Untersuchung zu den Potentialen von Flugwindenergieanlagen (FWEA) Phase II. Final Project Report, Fraunhofer Institute for Wind Energy and Energy System Technology IWES, Bremerhaven, Germany, June 2017. 105 pp. https://www.tib.eu/de/suchen/id/TIBKAT%3A1002309476/Projekt-OnKites-II-Untersuchung-zu-den-Potentialen/
  13. 13.
    Goela, J. S., Vijaykumar, R., Zimmermann, R. H.: Performance characteristics of a kitepowered pump. Journal of Energy Resource Technology 108(2), 188–193 (1986).  https://doi.org/10.1115/1.3231261
  14. 14.
    Hoerner, S. F.: Fluid-Dynamic Drag. Bricktown, Brick Town, NJ, USA (1965)Google Scholar
  15. 15.
    Hoerner, S. F., Borst, H. V.: Fluid-dynamic lift. 2nd ed. Mrs. Liselotte A. Hoerner, Brick Town, NJ, USA (1985)Google Scholar
  16. 16.
    Houska, B.: Robustness and Stability Optimization of Open-Loop Controlled Power Generating Kites. M.Sc.Thesis, Ruprecht-Karls-Universität, Heidelberg, 2007. http://sist.shanghaitech.edu.cn/faculty/boris/paper/diploma_thesis.pdf
  17. 17.
    Houska, B., Diehl, M.: Optimal control for power generating kites. In: Proceedings of the 9th European Control Conference, pp. 3560–3567, Kos, Greece, 2–5 July 2007Google Scholar
  18. 18.
    Houska, B., Diehl, M.: Optimal control of towing kites. In: Proceedings of the 45th IEEE Conference on Decision and Control, pp. 2693–2697, San Diego, CA, USA, 13–15 Dec 2006.  https://doi.org/10.1109/CDC.2006.377210
  19. 19.
    Ilzhöfer, A., Houska, B., Diehl, M.: Nonlinear MPC of kites under varying wind conditions for a new class of large-scale wind power generators. International Journal of Robust and Nonlinear Control 17(17), 1590–1599 (2007).  https://doi.org/10.1002/rnc.1210
  20. 20.
    Jehle, C., Schmehl, R.: Applied Tracking Control for Kite Power Systems. AIAA Journal of Guidance, Control, and Dynamics 37(4), 1211–1222 (2014).  https://doi.org/10.2514/1.62380
  21. 21.
    KiteGen: KiteGen STEM. http://kitegen.com/en/products/stem (2015). Accessed 20 Jan 2016
  22. 22.
    Loyd, M. L.: Crosswind kite power. Journal of Energy 4(3), 106–111 (1980).  https://doi.org/10.2514/3.48021
  23. 23.
    Luchsinger, R. H.: Pumping Cycle Kite Power. In: Ahrens, U., Diehl, M., Schmehl, R. (eds.) Airborne Wind Energy, Green Energy and Technology, Chap. 3, pp. 47–64. Springer, Berlin Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39965-7_3
  24. 24.
    Oberth, H.: Primer for those who would govern. West Art Pub. (1987)Google Scholar
  25. 25.
    Pocock, G.: The Aeropleustic Art, or, Navigation in the Air by the use of Kites, or Buoyant Sails. Sherwood & Co, London (1827). http://babel.hathitrust.org/cgi/pt?id=mdp.39015047378875
  26. 26.
    Riegler, G., Riedler, W., Horvath, E.: Transformation of Wind Energy by a High-Altitude Power Plant. Journal of Energy 7(1), 92–94 (1983).  https://doi.org/10.2514/3.62639
  27. 27.
    Sanno, K., Rao, K. V. S.: Estimation of wind power extraction from kites flying at high altitudes. Comparison of five mathematical models. Journal of Chemical and Pharmaceutical Sciences, Special Issue 4, 247–251 (2014). http://www.jchps.com/specialissues/Special%20issue4/jchps%2087%20kumari%20sanno%20254-256.pdf
  28. 28.
    Sanno, K., Rao, K. V. S.: Estimation of wind power extraction from kites flying at high altitudes. Comparison of two mathematical models. In: 2014 1st International Conference on Non Conventional Energy, 16–17 Jan 2014.  https://doi.org/10.1109/ICONCE.2014.6808708
  29. 29.
    Vander Lind, D.: Analysis and Flight Test Validation of High Performance Airborne Wind Turbines. In: Ahrens, U., Diehl, M., Schmehl, R. (eds.) Airborne Wind Energy, Green Energy and Technology, Chap. 28, pp. 473–490. Springer, Berlin Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39965-7_28
  30. 30.
    Vermillion, C., Glass, B., Rein, A.: Lighter-Than-Air Wind Energy Systems. In: Ahrens, U., Diehl, M., Schmehl, R. (eds.) Airborne Wind Energy, Green Energy and Technology, Chap. 30, pp. 501–514. Springer, Berlin Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39965-7_30
  31. 31.
    Ware, G. M., Hassell, J. L.: Wind-tunnel investigation of ram-air-inflated all-flexible wings of aspect ratios 1.0 to 3.0. NASA TM SX-1923, NASA Langley Research Center, Hampton, VA, USA, 1969Google Scholar
  32. 32.
    Williams, P., Lansdorp, B., Ockels,W. J.: Modeling and Control of a Kite on a Variable Length Flexible Inelastic Tether. AIAA Paper 2007-6705. In: Proceedings of the AIAA Modeling and Simulation Technologies Conference and Exhibit, Hilton Head, SC, USA, 20–23 Aug 2007.  https://doi.org/10.2514/6.2007-6705
  33. 33.
    Williams, P., Lansdorp, B., Ockels, W.: Optimal Crosswind Towing and Power Generation with Tethered Kites. AIAA Journal of Guidance, Control, and Dynamics 31(1), 81–93 (2008).  https://doi.org/10.2514/1.30089
  34. 34.
    Zgraggen, A. U., Fagiano, L., Morari, M.: Automatic Retraction and Full-Cycle Operation for a Class of Airborne Wind Energy Generators. IEEE Transactions on Control Systems Technology 24(2), 594–608 (2015).  https://doi.org/10.1109/TCST.2015.2452230
  35. 35.
    Zgraggen, A. U.: Automatic Power Cycles for Airborne Wind Energy Generators. Ph.D. Thesis, ETH Zurich, 2014.  https://doi.org/10.3929/ethz-a-010350742

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Fraunhofer Institute for Wind Energy and Energy System Technology IWESBremerhavenGermany

Personalised recommendations