Advertisement

Kite as a Beam: A Fast Method to get the Flying Shape

  • Alain de Solminihac
  • Alain Nême
  • Chloé Duport
  • Jean-Baptiste Leroux
  • Kostia Roncin
  • Christian Jochum
  • Yves Parlier
Chapter
Part of the Green Energy and Technology book series (GREEN)

Abstract

Designing new large kite wings requires engineering tools that can account for flow-structure interaction. Although a fully coupled simulation of deformable membrane structures under aerodynamic load is already possible using Finite Element and Computational Fluid Dynamics methods this approach is computationally demanding. The core idea of the present study is to approximate a leading edge inflatable tube kite by an assembly of equivalent beam elements. In spanwise direction the wing is partitioned into several elementary cells, each consisting of a leading edge segment, two lateral inflatable battens, and the corresponding portion of canopy. The mechanical properties of an elementary cell—axial, transverse shear, bending, and torsion stiffness—and the chordwise centroid position are determined from the response to several imposed elementary displacements at its boundary, in the case of a cell under an uniform pressure loading. For this purpose the cells are supported at their four corners and different non-linear finite element analyses and linear perturbation computations are carried out. The complete kite is represented as an assembly of equivalent beams connected with rigid bodies. Coupled with a 3D non-linear lifting line method to determine the aerodynamics this structural model should allow predicting the flying shape and performance of new wing designs.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anderson, J. D.: Fundamentals of Aerodynamics. 5th ed. McGraw-Hill (2014)Google Scholar
  2. 2.
    Bosch, A., Schmehl, R., Tiso, P., Rixen, D.: Dynamic nonlinear aeroelastic model of a kite for power generation. AIAA Journal of Guidance, Control and Dynamics 37(5), 1426–1436 (2014).  https://doi.org/10.2514/1.G000545
  3. 3.
    Breukels, J.: An Engineering Methodology for Kite Design. Ph.D. Thesis, Delft University of Technology, 2011. http://resolver.tudelft.nl/uuid:cdece38a-1f13-47cc-b277-ed64fdda7cdf
  4. 4.
    Breukels, J., Schmehl, R., Ockels, W.: Aeroelastic Simulation of Flexible Membrane Wings based on Multibody System Dynamics. In: Ahrens, U., Diehl, M., Schmehl, R. (eds.) Airborne Wind Energy, Green Energy and Technology, Chap. 16, pp. 287–305. Springer, Berlin Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39965-7_16
  5. 5.
    Cowper, R. G.: The Shear Coefficient in Timoshenko’s Beam Theory. Journal of Applied Mechanics 33(2), 335–340 (1966).  https://doi.org/10.1115/1.3625046
  6. 6.
    Dadd, G. M., Hudson, D. A., Shenoi, R. A.: Determination of kite forces using threedimensional flight trajectories for ship propulsion. Renewable Energy 36(10), 2667–2678 (2011).  https://doi.org/10.1016/j.renene.2011.01.027
  7. 7.
    Fechner, U., Vlugt, R. van der, Schreuder, E., Schmehl, R.: Dynamic Model of a Pumping Kite Power System. Renewable Energy (2015).  https://doi.org/10.1016/j.renene.2015.04.028. arXiv:1406.6218 [cs.SY]
  8. 8.
    Gaunaa, M., Paralta Carqueija, P. F., Réthoré, P.-E. M., Sørensen, N. N.: A Computationally Efficient Method for Determining the Aerodynamic Performance of Kites for Wind Energy Applications. In: Proceedings of the European Wind Energy Association Conference, Brussels, Belgium, 14–17 Mar 2011. http://findit.dtu.dk/en/catalog/181771316
  9. 9.
    Gohl, F., Luchsinger, R. H.: Simulation Based Wing Design for Kite Power. In: Ahrens, U., Diehl, M., Schmehl, R. (eds.) Airborne Wind Energy, Green Energy and Technology, Chap. 18, pp. 325–338. Springer, Berlin Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39965-7_18
  10. 10.
    Katz, J., Plotkin, A.: Low-speed aerodynamics. 2nd ed. Cambridge University Press (2001)Google Scholar
  11. 11.
    Leloup, R., Bles, G., Roncin, K., Leroux, J., Jochum, C., Parlier, Y.: Prediction of the stress distribution on a Leading Edge Inflatable kite under aerodynamic load. In: Proceedings 14èmes Journées de l’Hydrodynamique, Val de Reuil, France, 18–20 Nov 2014Google Scholar
  12. 12.
    Leloup, R., Roncin, K., Behrel, M., Bles, G., Leroux, J.-B., Jochum, C., Parlier, Y.: A continuous and analytical modeling for kites as auxiliary propulsion devoted to merchant ships, including fuel saving estimation. Renewable Energy 86, 483–496 (2016).  https://doi.org/10.1016/j.renene.2015.08.036
  13. 13.
    Leloup, R.: Modelling approach and numerical tool development for kite performance assesment and mechanical design; application to vessels auxiliary propulsion. Ph.D. Thesis, ENSTA Bretagne/University of Western Brittany, 2014Google Scholar
  14. 14.
    Leloup, R., Roncin, K., Bles, G., Leroux, J.-B., Jochum, C., Parlier, Y.: Estimation of the Lift-to-Drag Ratio Using the Lifting Line Method: Application to a Leading Edge Inflatable Kite. In: Ahrens, U., Diehl, M., Schmehl, R. (eds.) Airborne Wind Energy, Green Energy and Technology, Chap. 19, pp. 339–355. Springer, Berlin Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39965-7_19
  15. 15.
    Sigrist, J. F.: Fluid-Structure Interaction: An Introduction to Finite Element Coupling. Wiley (2015)Google Scholar
  16. 16.
    Simulia: Abaqus Analysis User’s Guide. v6.14. (2014)Google Scholar
  17. 17.
    Solminihac, A. d., Nême, A., Roncin, K., Leroux, J.-B., Jochum, C., Parlier, Y.: Kite as Beam – An Analytical 3D Kite Tether Model. In: Schmehl, R. (ed.). Book of Abstracts of the International Airborne Wind Energy Conference 2015, p. 44, Delft, The Netherlands, 15–16 June 2015.  https://doi.org/10.4233/uuid:7df59b79-2c6b-4e30-bd58-8454f493bb09.presentation video recording available from: https://collegerama.tudelft.nl/Mediasite/Play/0551a13079294bc88f7b0e32e8944d121d
  18. 18.
    Trimarchi, D., Rizzo, C. M.: A FEM-Matlab code for Fluid-Structure interaction coupling with application to sail aerodynamics of yachts. In: Proceedings of the 13th Congress of the International Maritime Association of the Mediterranean, Istanbul, Turkey, 12–15 Oct 2009. http://eprints.soton.ac.uk/id/eprint/69831

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Alain de Solminihac
    • 1
  • Alain Nême
    • 1
  • Chloé Duport
    • 1
  • Jean-Baptiste Leroux
    • 1
  • Kostia Roncin
    • 1
  • Christian Jochum
    • 1
  • Yves Parlier
    • 2
  1. 1.FRE CNRS 3744, IRDLENSTA BretagneBrestFrance
  2. 2.Beyond the seaLa Teste de BuchFrance

Personalised recommendations