Skip to main content

Kite as a Beam: A Fast Method to get the Flying Shape

  • Chapter
  • First Online:
Airborne Wind Energy

Abstract

Designing new large kite wings requires engineering tools that can account for flow-structure interaction. Although a fully coupled simulation of deformable membrane structures under aerodynamic load is already possible using Finite Element and Computational Fluid Dynamics methods this approach is computationally demanding. The core idea of the present study is to approximate a leading edge inflatable tube kite by an assembly of equivalent beam elements. In spanwise direction the wing is partitioned into several elementary cells, each consisting of a leading edge segment, two lateral inflatable battens, and the corresponding portion of canopy. The mechanical properties of an elementary cell—axial, transverse shear, bending, and torsion stiffness—and the chordwise centroid position are determined from the response to several imposed elementary displacements at its boundary, in the case of a cell under an uniform pressure loading. For this purpose the cells are supported at their four corners and different non-linear finite element analyses and linear perturbation computations are carried out. The complete kite is represented as an assembly of equivalent beams connected with rigid bodies. Coupled with a 3D non-linear lifting line method to determine the aerodynamics this structural model should allow predicting the flying shape and performance of new wing designs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, J. D.: Fundamentals of Aerodynamics. 5th ed. McGraw-Hill (2014)

    Google Scholar 

  2. Bosch, A., Schmehl, R., Tiso, P., Rixen, D.: Dynamic nonlinear aeroelastic model of a kite for power generation. AIAA Journal of Guidance, Control and Dynamics 37(5), 1426–1436 (2014). https://doi.org/10.2514/1.G000545

  3. Breukels, J.: An Engineering Methodology for Kite Design. Ph.D. Thesis, Delft University of Technology, 2011. http://resolver.tudelft.nl/uuid:cdece38a-1f13-47cc-b277-ed64fdda7cdf

  4. Breukels, J., Schmehl, R., Ockels, W.: Aeroelastic Simulation of Flexible Membrane Wings based on Multibody System Dynamics. In: Ahrens, U., Diehl, M., Schmehl, R. (eds.) Airborne Wind Energy, Green Energy and Technology, Chap. 16, pp. 287–305. Springer, Berlin Heidelberg (2013). https://doi.org/10.1007/978-3-642-39965-7_16

  5. Cowper, R. G.: The Shear Coefficient in Timoshenko’s Beam Theory. Journal of Applied Mechanics 33(2), 335–340 (1966). https://doi.org/10.1115/1.3625046

  6. Dadd, G. M., Hudson, D. A., Shenoi, R. A.: Determination of kite forces using threedimensional flight trajectories for ship propulsion. Renewable Energy 36(10), 2667–2678 (2011). https://doi.org/10.1016/j.renene.2011.01.027

  7. Fechner, U., Vlugt, R. van der, Schreuder, E., Schmehl, R.: Dynamic Model of a Pumping Kite Power System. Renewable Energy (2015). https://doi.org/10.1016/j.renene.2015.04.028. arXiv:1406.6218 [cs.SY]

  8. Gaunaa, M., Paralta Carqueija, P. F., Réthoré, P.-E. M., Sørensen, N. N.: A Computationally Efficient Method for Determining the Aerodynamic Performance of Kites for Wind Energy Applications. In: Proceedings of the European Wind Energy Association Conference, Brussels, Belgium, 14–17 Mar 2011. http://findit.dtu.dk/en/catalog/181771316

  9. Gohl, F., Luchsinger, R. H.: Simulation Based Wing Design for Kite Power. In: Ahrens, U., Diehl, M., Schmehl, R. (eds.) Airborne Wind Energy, Green Energy and Technology, Chap. 18, pp. 325–338. Springer, Berlin Heidelberg (2013). https://doi.org/10.1007/978-3-642-39965-7_18

  10. Katz, J., Plotkin, A.: Low-speed aerodynamics. 2nd ed. Cambridge University Press (2001)

    Google Scholar 

  11. Leloup, R., Bles, G., Roncin, K., Leroux, J., Jochum, C., Parlier, Y.: Prediction of the stress distribution on a Leading Edge Inflatable kite under aerodynamic load. In: Proceedings 14èmes Journées de l’Hydrodynamique, Val de Reuil, France, 18–20 Nov 2014

    Google Scholar 

  12. Leloup, R., Roncin, K., Behrel, M., Bles, G., Leroux, J.-B., Jochum, C., Parlier, Y.: A continuous and analytical modeling for kites as auxiliary propulsion devoted to merchant ships, including fuel saving estimation. Renewable Energy 86, 483–496 (2016). https://doi.org/10.1016/j.renene.2015.08.036

  13. Leloup, R.: Modelling approach and numerical tool development for kite performance assesment and mechanical design; application to vessels auxiliary propulsion. Ph.D. Thesis, ENSTA Bretagne/University of Western Brittany, 2014

    Google Scholar 

  14. Leloup, R., Roncin, K., Bles, G., Leroux, J.-B., Jochum, C., Parlier, Y.: Estimation of the Lift-to-Drag Ratio Using the Lifting Line Method: Application to a Leading Edge Inflatable Kite. In: Ahrens, U., Diehl, M., Schmehl, R. (eds.) Airborne Wind Energy, Green Energy and Technology, Chap. 19, pp. 339–355. Springer, Berlin Heidelberg (2013). https://doi.org/10.1007/978-3-642-39965-7_19

  15. Sigrist, J. F.: Fluid-Structure Interaction: An Introduction to Finite Element Coupling. Wiley (2015)

    Google Scholar 

  16. Simulia: Abaqus Analysis User’s Guide. v6.14. (2014)

    Google Scholar 

  17. Solminihac, A. d., Nême, A., Roncin, K., Leroux, J.-B., Jochum, C., Parlier, Y.: Kite as Beam – An Analytical 3D Kite Tether Model. In: Schmehl, R. (ed.). Book of Abstracts of the International Airborne Wind Energy Conference 2015, p. 44, Delft, The Netherlands, 15–16 June 2015. https://doi.org/10.4233/uuid:7df59b79-2c6b-4e30-bd58-8454f493bb09.presentation video recording available from: https://collegerama.tudelft.nl/Mediasite/Play/0551a13079294bc88f7b0e32e8944d121d

  18. Trimarchi, D., Rizzo, C. M.: A FEM-Matlab code for Fluid-Structure interaction coupling with application to sail aerodynamics of yachts. In: Proceedings of the 13th Congress of the International Maritime Association of the Mediterranean, Istanbul, Turkey, 12–15 Oct 2009. http://eprints.soton.ac.uk/id/eprint/69831

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Nême .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

de Solminihac, A. et al. (2018). Kite as a Beam: A Fast Method to get the Flying Shape. In: Schmehl, R. (eds) Airborne Wind Energy. Green Energy and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-1947-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-1947-0_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-1946-3

  • Online ISBN: 978-981-10-1947-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics