Life Cycle Assessment of Electricity Production from Airborne Wind Energy

  • Stefan Wilhelm
Part of the Green Energy and Technology book series (GREEN)


Renewable energies are superior to conventional electricity generating technologies in most environmental categories but are not completely free of environmental burdens. Especially when large-scale deployment is the goal, the effects of renewable energy use can have significant effects. As of now, there is no profound evaluation of the ecological aspects of airborne wind energy systems in the literature. By applying the life cycle assessment approach, this study investigates the global warming potential and cumulative energy demand associated with the production of 1 kWh of electricity from an AWE plant. In addition, the greatest global warming contributors and the energy payback time are evaluated and compared to conventional wind energy. For that purpose, energy and material flows of all life cycle processes, from exploitation of raw materials, manufacturing, assembly, transportation, installation, operation and maintenance to decommissioning and disposal, are analyzed. The study is based on a fictitious 1.8 MW airborne wind energy system including all required components up to connection to the electricity grid. As an example case, a generalized fixed wing aircraft with a ground-based generator is considered. Then, this system is compared to a conventional wind turbine of a similar power rating. This information can support system developers in an eco-friendlier system design and decision-makers in economy, public and politics to evaluate their support of this technology.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The author would like to thank VIP Innovation GmbH and its network HWN500 for providing time to condense the original M.Sc. thesis into the present book chapter. Furthermore, the provision of data by Ampyx Power and the Endowed Professorship of Technical Textiles and Textile Mechanical Components at TU Chemnitz are highly appreciated. Special thanks for proof reading and valuable feedback go to the author’s co-students Andrew C. Toth, Fahim Sadat and Adam Beck and to the unknown peer reviewers of this chapter.


  1. 1.
    ABB Automation: AC machine type AMG in the 500–5000 kVA power range. Environmental Product Declaration FREPD_001 rev. A, 2003. Retrieved from
  2. 2.
    ABB Oy: DriveIT Low Voltage AC Drive ACS800 frequency converter, 630 kW power. Environmental Product Declaration 3AFE64726536 rev. B, 2003. Retrieved from
  3. 3.
    ABB Transformers AB: Power transformer TrafoStar 500 MVA. Environmental Product Declaration SEEPD_TPT_TrafoStar0001_1 rev. A, 2003. Retrieved from
  4. 4.
    Ahrens, U., Diehl, M., Schmehl, R. (eds.): Preface. Airborne Wind Energy. Green Energy and Technology. Springer, Berlin Heidelberg (2013).
  5. 5.
    Ampyx Power B.V. Accessed 6 Feb 2017
  6. 6.
    Arbeitsgemeinschaft Energiebilanzen e.V.: Energy Consumption in Germany in 2015. Report, Berlin, Germany, Mar 2015.
  7. 7.
    Classen, M., Althaus, H.-J., Blaser, S., Tuchschmid, M., Jungbluth, N., Doka, G., Faist Emmenegger, M., Scharnhorst, W.: Life Cycle Inventories of Metals. ecoinvent report No. 10, v2.1, Swiss Centre for Life Cycle Inventories, Dübendorf, Switzerland, 2009Google Scholar
  8. 8.
    D’Souza, N., Gbegbaje-Das, E., Shonfield, P.: Life Cycle Assessment Of Electricity Production from a Vestas V112 TurbineWind Plant. Final Report, PE NorthWest Europe ApS, 31 Jan 2011.
  9. 9.
    Duflou, J. R., Deng, Y., Van Acker, K., Dewulf, W.: Do fiber-reinforced polymer composites provide environmentally benign alternatives? A life-cycle-assessment-based study. MRS Bulletin 37(04), 374–382 (2012).
  10. 10.
    ecoinvent Association: ecoinvent 3 database. (2013). Accessed 5 Feb 2015
  11. 11.
    Enercon GmbH: LCA of ENERCON Wind Energy Converter E-82 E2, Aurich, Germany, 2011Google Scholar
  12. 12.
    Frischknecht, R., Tuchschmid, M., Faist Emmenegger, M., Bauer, C., Dones, R.: Strommix und Stromnetz. In: Dones, R. (ed.) Sachbilanzen von Energiesystemen: Grundlagen für den ökologischen Vergleich von Energiesystemen und den Einbezug von Energiesystemen in Ökobilanzen für die Schweiz. ecoinvent report No. 6 Teil XVI, v2.0. Paul Scherrer Institut Villigen, Swiss Centre for Life Cycle Inventories, Dübendorf, Switzerland (2007). retrieved from
  13. 13.
    German Federal Ministry for Economic Affairs and Energy (BMWi): Energie in Deutschland – Trends und Hintergründe zur Energieversorgung. Brochure, Feb 2013.,did=251954.html
  14. 14.
    German Federal Ministry for the Environment, Nature Conservation, Building and Nuclear Safety (BMUB): Climate Protection in Figures – Facts, Trends and Incentives for German Climate Policy. Report, June 2014.
  15. 15.
    Guezuraga, B., Zauner, R., Pölz, W.: Life cycle assessment of two different 2 MW class wind turbines. Renewable Energy 37(1), 37–44 (2012).
  16. 16.
    Guinée, J. (ed.): Handbook on Life Cycle Assessment. Operational Guide to the ISO Standards. Eco-Efficiency in Industry and Science, vol. 7. Springer Netherlands (2002).
  17. 17.
    Heins, O., Krebs, T., Baumann, M., Binder, G.: Korrosionsschutz von Offshore-Windenergieanlagen. In: Proceedings of the HTG-Kongress 2011, Würzburg, Germany, 9 Sept 2011.
  18. 18.
    Hischier, R.: Life Cycle Inventories of Packaging and Graphical Papers. ecoinvent report No. 11, v2.0, EMPA St. Gallen, Swiss Centre for Life Cycle Inventories, Dübendorf, Switzerland, 2007. retrieved from
  19. 19.
    Hischier, R., Weidema, B., Althaus, H.-J., Bauer, C., Doka, G., Dones, R., Frischknecht, R., Hellweg, S., Humbert, S., Jungbluth, N., Köllner, T., Loerincik, Y., Margni, M., Nemecek, T.: Implementation of Life Cycle Impact Assessment Methods. ecoinvent report No. 3, v2.2, Swiss Centre for Life Cycle Inventories, Dübendorf, Switzerland, 2010.
  20. 20.
    ifu Hamburg GmbH: Umberto NXT LCA. Accessed 9 Mar 2015
  21. 21.
    Intergovernmental Panel on Climate Change (IPCC): IPCC Second Assessment: Climate Chance 1995, 1995.
  22. 22.
    International Organizational for Standardization: Environmental management – Life cycle assessment – Principles and framework, ISO Standard 14040:2006Google Scholar
  23. 23.
    International Organizational for Standardization: Environmental management – Life cycle assessment – Requirements and guidelines, ISO Standard 14044:2006Google Scholar
  24. 24.
    Kaltschmitt, M., Streicher, W., Wiese, A. (eds.): Erneuerbare Energien. Springer, Berlin Heidelberg (2006).
  25. 25.
    Khan, F. I., Hawboldt, K., Iqbal, M. T.: Life Cycle Analysis of wind-fuel cell integrated system. Renewable Energy 30(2), 157–177 (2005).
  26. 26.
    Louwers, D., Steeman, R., Meulman, J. H.: Sustainability: market trends, case study on carbon footprint for a vest made with Dyneema® and proposed waste solution. In: Proceedings of the Personal Armor Systems Symposium PASS, Cambridge, UK, 8 Sept 2014. Retrieved from
  27. 27.
    27. Loyd, M. L.: Crosswind kite power. Journal of Energy 4(3), 106–111 (1980).
  28. 28.
    Loyd, M. L.: Foreword. In: Ahrens, U., Diehl, M., Schmehl, R. (eds.) Airborne Wind Energy, Green Energy and Technology. Springer, Berlin Heidelberg (2013).
  29. 29.
    Makani Power Inc. Accessed 4 July 2013
  30. 30.
    Mammitzsch, J.: Expert consultation, TU Chemnitz, Germany, 2015.
  31. 31.
    Marheineke, T.: Life cycle assessment of fossil, nuclear and renewable electricity generation techniques. Ph.D. Thesis, University of Stuttgart, 2002.
  32. 32.
    Martínez, E., Sanz, F., Pellegrini, S., Jiménez, E., Blanco, J.: Life cycle assessment of a multimegawatt wind turbine. Renewable Energy 34(3), 667–673 (2009).
  33. 33.
    Siemens AG: A clean energy solution – from cradle to grave. Onshore wind power plant employing SWT-2.3-108. Environmental Production Declaration, 2015. Retrieved from
  34. 34.
    Singh, A., Pant, D., Olsen, S. I. (eds.): Life Cycle Assessment of Renewable Energy Sources. Green Energy and Technology. Springer London, London (2013).
  35. 35.
    SkySails GmbH: SkySails Antrieb für Frachtschiffe. (2014). Accessed 30 May 2016
  36. 36.
    Spielmann, M., Dones, R., Bauer, C., Tuchschmid, M.: Transport Services. ecoinvent report No. 14, v2.0, Swiss Centre for Life Cycle Inventories, Dübendorf, Switzerland, 2007.
  37. 37.
    Stein, C.: Lebenszyklusanalyse einer Offshore-Windstromerzeugung. M.Sc.Thesis, University of Technology Hamburg, 2010Google Scholar
  38. 38.
    Südkabel GmbH: XLPE Power Cable Systems for High and Extra-High Voltages. Brochure, Mannheim, Germany, 2004.
  39. 39.
    Suzuki, T., Odai, T., Hukui, R., Takahashi, J.: LCA of Passenger Vehicles Lightened by Recyclable Carbon Fiber Reinforced Plastics. In: Proceedings of the International Conference on Life Cycle Assessment 2005, pp. 1–3, San Jose, Costa Rica, 25–28 Apr 2015.
  40. 40.
    Tryfonidou, R.: Energetische Analyse eines Offshore-Windparks unter Berücksichtigung der Netzintegration. Ph.D. Thesis, Ruhr University Bochum, 2006.
  41. 41.
    Vestas Wind Systems A/S: Life cycle assessment of electricity produced from onshore sited wind power plants based on Vestas V82-1.65 MW turbines, Randers, Denmark, 29 Dec 2006.
  42. 42.
    Wilhelm, S.: Life Cycle Assessment of Electricity Production from an Airborne Wind Energy System. M.Sc.Thesis, University of Technology Hamburg, 2015.
  43. 43.
    Wilhelm, S.: Life Cycle Assessment of Electricity Production from an Airborne Wind Energy System. In: Schmehl, R. (ed.). Book of Abstracts of the International Airborne Wind Energy Conference 2015, p. 75, Delft, The Netherlands, 15–16 June 2015. Presentation video recording available from:

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.ZIM network HWN 500c/o VIP Innovation GmbHBerlinGermany

Personalised recommendations