Skip to main content

Analytical Tether Model for Static Kite Flight

  • Chapter
  • First Online:
Airborne Wind Energy

Abstract

The use of traction kites as auxiliary propulsion systems for ships appears to be a high-potential alternative for fuel saving. To study such a system a tether model based on the catenary curve has been developed. This model allows calculating static flight positions of the kite on the edge of the wind window. The effect of the wind velocity gradient is taken into account for the evaluation of the aerodynamic forces acting on kite and tether. A closed-form expression is derived for the minimum wind velocity required for static flight of the kite. Results are presented for a kite with a surface area of 320 m2 and a mass of 300 kg attached to a tether with a diameter of 55 mm and a mass per unit length of 1:20 kgm−1. The minimum wind speed measured at 10 m altitude to launch the kite is found to be around 4:5 m/s. After the launching phase, we show that the optimal tether length for static flight is 128:4 m with a minimum wind speed of 4:06 m/s. The presented approach shows an error up to 9% for a zero-mass kite model with a straight massless tether regarding the maximal propulsion force estimation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Argatov, I., Rautakorpi, P., Silvennoinen, R.: Apparent wind load effects on the tether of a kite power generator. Journal ofWind Engineering and Industrial Aerodynamics 99(5), 1079–1088 (2011). https://doi.org/10.1016/j.jweia.2011.07.010

  2. Argatov, I., Rautakorpi, P., Silvennoinen, R.: Estimation of the mechanical energy output of the kite wind generator. Renewable Energy 34(6), 1525–1532 (2009). https://doi.org/10.1016/j.renene.2008.11.001

  3. Bigi, N., Nême, A., Roncin, K., Leroux, J.-B., Bles, G., Jochum, C., Parlier, Y.: A Quasi-Analytical 3D Kite Tether Model. In: Schmehl, R. (ed.). Book of Abstracts of the International Airborne Wind Energy Conference 2015, p. 43, Delft, The Netherlands, 15–16 June 2015. https://doi.org/10.4233/uuid:7df59b79-2c6b-4e30-bd58-8454f493bb09. Presentation video recording available from: https://collegerama.tudelft.nl/Mediasite/Play/0ed3695b3d284dd190f5162cdc5b806a1d

  4. Breukels, J.: Kite launch using an aerostat. Technical Report, Delft University of Technology, 21 Aug 2007. http://repository.tudelft.nl/view/ir/uuid%3A1a0c6dfd-6115-461f-ac04-bd8751efd6fb

  5. Dadd, G. M.: Kite dynamics for ship propulsion. Ph.D. Thesis, University of Southampton, 2013. http://eprints.soton.ac.uk/id/eprint/351348

  6. Dadd, G. M., Hudson, D. A., Shenoi, R. A.: Determination of kite forces using threedimensional flight trajectories for ship propulsion. Renewable Energy 36(10), 2667–2678 (2011). https://doi.org/10.1016/j.renene.2011.01.027

  7. Duckworth, R.: The application of elevated sails (kites) for fuel saving auxiliary propulsion of commercial vessels. Journal of Wind Engineering and Industrial Aerodynamics 20(1–3), 297–315 (1985). https://doi.org/10.1016/0167-6105(85)90023-6

  8. Fer, F.: Thermodynamique macroscopique, vol. 2. Gordon & Breach (1971)

    Google Scholar 

  9. Fitzgerald, J. E.: A tensorial Hencky measure of strain and strain rate for finite deformations. Journal of Applied Physics 51(10), 5111–5115 (1980). https://doi.org/10.1063/1.327428

  10. Hobbs, S. E.: A Quantitative Study of Kite Performance in Natural Wind with Application to Kite Anemometry. Ph.D. Thesis, Cranfield University, 1986. https://dspace.lib.cranfield.ac.uk/bitstream/1826/918/2/sehphd2a.pdf

  11. Hoerner, S. F.: Fluid-Dynamic Drag. Bricktown, Brick Town, NJ, USA (1965)

    Google Scholar 

  12. International Towing Tank Conference: ITTC Symbols and Terminology List Version 2014, Sept 2014. http://ittc.info/media/4004/structured-list2014.pdf

  13. Irvine, H. M., Sinclair, G. B.: The suspended elastic cable under the action of concentrated vertical loads. International Journal of Solids and Structures 12(4), 309–317 (1976). https://doi.org/10.1016/0020-7683(76)90080-9

  14. Irvine, H. M.: Cable structures. MIT Press, London (1981)

    Google Scholar 

  15. Jung, T. P.: Wind Tunnel Study of Drag of Various Rope Designs. AIAA Paper 2009-3608. In: Proceedings of the 27th AIAA Applied Aerodynamics Conference, San Antonio, TX, USA, 22–25 June 2009. https://doi.org/10.2514/6.2009-3608

  16. Leclère, G., Nême, A., Cognard, J., Berger, F.: Rupture simulation of 3D elastoplastic structures under dynamic loading. Computers & Structures 82(23–26), 2049–2059 (2004). https://doi.org/10.1016/j.compstruc.2004.03.073

  17. Leloup, R., Roncin, K., Behrel, M., Bles, G., Leroux, J.-B., Jochum, C., Parlier, Y.: A continuous and analytical modeling for kites as auxiliary propulsion devoted to merchant ships, including fuel saving estimation. Renewable Energy 86, 483–496 (2016). https://doi.org/10.1016/j.renene.2015.08.036

  18. Lewis, W. J.: Tension Structures: Form and Behaviour. Thomas Telford, London (2003)

    Google Scholar 

  19. Naaijen, P., Koster, V.: Performance of auxiliary wind propulsion for merchant ships using a kite. In: Proceedings of the 2nd International Conference on Marine Research and Transportation, pp. 45–53, Naples, Italy, 28–30 June 2007. http://www.icmrt07.unina.it/Proceedings/Papers/c/26.pdf

  20. Sarpkaya, T.: A critical review of the intrinsic nature of vortex-induced vibrations. Journal of Fluids and Structures 19(4), 389–447 (2004). https://doi.org/10.1016/j.jfluidstructs.2004.02.005

  21. Terink, E. J., Breukels, J., Schmehl, R., Ockels, W. J.: Flight Dynamics and Stability of a Tethered Inflatable Kiteplane. AIAA Journal of Aircraft 48(2), 503–513 (2011). https://doi.org/10.2514/1.CO31108

  22. Varma, S. K., Goela, J. S.: Effect of wind loading on the design of a kite tether. Journal of Energy 6(5), 342–343 (1982). https://doi.org/10.2514/3.48051

  23. Wellicome, J. F.: Some comments on the relative merits of various wind propulsion devices. Journal of Wind Engineering and Industrial Aerodynamics 20(1–3), 111–142 (1985). https://doi.org/10.1016/0167-6105(85)90015-7

  24. Williams, P., Lansdorp, B., Ockels, W. J.: Modeling and Control of a Kite on a Variable Length Flexible Inelastic Tether. AIAA Paper 2007-6705. In: Proceedings of the AIAA Modeling and Simulation Technologies Conference and Exhibit, Hilton Head, SC, USA, 20–23 Aug 2007. https://doi.org/10.2514/6.2007-6705

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nedeleg Bigi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bigi, N. et al. (2018). Analytical Tether Model for Static Kite Flight. In: Schmehl, R. (eds) Airborne Wind Energy. Green Energy and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-1947-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-1947-0_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-1946-3

  • Online ISBN: 978-981-10-1947-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics