Advertisement

Pumping Cycle Kite Power with Twings

  • Rolf Luchsinger
  • Damian Aregger
  • Florian Bezard
  • Dino Costa
  • Cédric Galliot
  • Flavio Gohl
  • Jannis Heilmann
  • Henrik Hesse
  • Corey Houle
  • Tony A. Wood
  • Roy S. Smith
Chapter
Part of the Green Energy and Technology book series (GREEN)

Abstract

Pumping cycle kite power has attracted considerable interest over the last years with several start-ups and research teams investigating the technology. While all these groups produce electrical power with a ground-based generator in a cyclic process, there is no consent about the shape, structure and control of the flying object. In particular the launching and landing strategy has not been settled yet. TwingTec has followed a pragmatic approach focusing on the flying part of the system. The spin-off from Empa and FHNW has developed over the last years in close collaboration with leading research institutes from Switzerland the twing, an acronym for tethered wing. The guiding principle behind the design of the twing was to combine the light weight property of a kite with the aerodynamic properties of a glider plane. Launching and landing was solved by integrating rotors into the structure allowing the twing to hover. Launching, transition into crosswind, autonomous power production, transition into hover and landing has been demonstrated with the current small-scale test system.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.,W. T., Hesse, H., Zgraggen, A. U., Smith, R. S.: Model-based Identification and Control of the Velocity Vector Orientation for Autonomous Kites. In: Proceedings of the 2015 American Control Conference, Chicago, IL, USA, 1–3 July 2015.  https://doi.org/10.1109/ACC.2015.7171088
  2. 2.
    Argatov, I., Rautakorpi, P., Silvennoinen, R.: Estimation of the mechanical energy output of the kite wind generator. Renewable Energy 34(6), 1525–1532 (2009).  https://doi.org/10.1016/j.renene.2008.11.001
  3. 3.
    Bormann, A., Ranneberg, M., Kövesdi, P., Gebhardt, C., Skutnik, S.: Development of a Three-Line Ground-Actuated Airborne Wind Energy Converter. In: Ahrens, U., Diehl, M., Schmehl, R. (eds.) Airborne Wind Energy, Green Energy and Technology, Chap. 24, pp. 427–437. Springer, Berlin Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39965-7_24
  4. 4.
    Breuer, J. C. M., Luchsinger, R. H.: Inflatable kites using the concept of Tensairity. Aerospace Science and Technology 14(8), 557–563 (2010).  https://doi.org/10.1016/j.ast.2010.04.009
  5. 5.
    Canale, M., Fagiano, L., Milanese, M.: High Altitude Wind Energy Generation Using Controlled Power Kites. IEEE Transactions on Control Systems Technology 18(2), 279–293 (2010).  https://doi.org/10.1109/TCST.2009.2017933
  6. 6.
    D., V.: Wainwright Wind-Diesel Hybrid Feasibility Study, V3 Energy, LLC, Eagle River, Alaska, 2011. http://www.v3energy.com/wp-content/uploads/2010/08/v3-energy-wainwright-feasibility-study.pdf
  7. 7.
    Diehl, M., Ockels, W. et al.: On the Development of Airborne Wind Energy in Europe. Letter to the Members of the European Parliament and European Commissioners. Leuven, Belgium, 2 Dec 2011. http://homes.esat.kuleuven.be/~highwind/wp-content/uploads/2012/02/Letter_petition-no-sig-final_version.pdf Accessed 1 Oct 2016
  8. 8.
    European Parliament Committee on Petitions: Notice to Members on Petition 1326/2011. PE498.097 v01-00, 24 Oct 2012. http://www.europarl.europa.eu/meetdocs/2009_2014/documents/peti/cm/917/917158/917158en.pdf
  9. 9.
    Fagiano, L., Zgraggen, A. U., Morari, M., Khammash, M.: Automatic crosswind flight of tethered wings for airborne wind energy:modeling, control design and experimental results. IEEE Transactions on Control System Technology 22(4), 1433–1447 (2014).  https://doi.org/10.1109/TCST.2013.2279592
  10. 10.
    Fagiano, L., Huynh, K., Bamieh, B., Khammash, M.: On sensor fusion for airborne wind energy systems. IEEE Transactions on Control Systems Technology 22(3), 930–943 (2014).  https://doi.org/10.1109/TCST.2013.2269865
  11. 11.
    Fritz, F.: Application of an Automated Kite System for Ship Propulsion and Power Generation. In: Ahrens, U., Diehl, M., Schmehl, R. (eds.) Airborne Wind Energy, Green Energy and Technology, Chap. 20, pp. 359–372. Springer, Berlin Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39965-7_20
  12. 12.
    Gohl, F., Luchsinger, R. H.: Simulation Based Wing Design for Kite Power. In: Ahrens, U., Diehl, M., Schmehl, R. (eds.) Airborne Wind Energy, Green Energy and Technology, Chap. 18, pp. 325–338. Springer, Berlin Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39965-7_18
  13. 13.
    Lazard: Levelized Cost of Energy Analysis - Version 8.0. https://www.lazard.com/media/1777/levelized_cost_of_energy_-_version_80.pdf (2014). Accessed 19 May 2016
  14. 14.
    Loyd, M. L.: Crosswind kite power. Journal of Energy 4(3), 106–111 (1980).  https://doi.org/10.2514/3.48021
  15. 15.
    Luchsinger, R. H. et al.: Closing the Gap: Pumping Cycle Kite Power with Twings. In: Schmehl, R. (ed.). Book of Abstracts of the International Airborne Wind Energy Conference2015, pp. 26–28, Delft, The Netherlands, 15–16 June 2015.  https://doi.org/10.4233/uuid:7df59b79-2c6b-4e30-bd58-8454f493bb09. Presentation video recording available from: https://collegerama.tudelft.nl/Mediasite/Play/646b794e7ac54320ba48ba9f41b41f811d
  16. 16.
    Luchsinger, R. H.: Pumping Cycle Kite Power. In: Ahrens, U., Diehl, M., Schmehl, R. (eds.) Airborne Wind Energy, Green Energy and Technology, Chap. 3, pp. 47–64. Springer, Berlin Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39965-7_3
  17. 17.
    Milanese, M., Taddei, F., Milanese, S.: Design and Testing of a 60 kW Yo-Yo Airborne Wind Energy Generator. In: Ahrens, U., Diehl, M., Schmehl, R. (eds.) Airborne Wind Energy, Green Energy and Technology, Chap. 21, pp. 373–386. Springer, Berlin Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39965-7_21
  18. 18.
    Ruiterkamp, R., Sieberling, S.: Description and Preliminary Test Results of a Six Degrees of Freedom Rigid Wing Pumping System. In: Ahrens, U., Diehl, M., Schmehl, R. (eds.) Airborne Wind Energy, Green Energy and Technology, Chap. 26, pp. 443–458. Springer, Berlin Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39965-7_26
  19. 19.
    SwissKitePower. http://www.swisskitepower.ch/. Accessed 10 July 2012
  20. 20.
    Vlugt, R. van der, Peschel, J., Schmehl, R.: Design and Experimental Characterization of a Pumping Kite Power System. In: Ahrens, U., Diehl, M., Schmehl, R. (eds.) Airborne Wind Energy, Green Energy and Technology, Chap. 23, pp. 403–425. Springer, Berlin Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39965-7_23
  21. 21.
    Zgraggen, A. U., Fagiano, L., Morari, M.: Automatic Retraction and Full-Cycle Operation for a Class of Airborne Wind Energy Generators. IEEE Transactions on Control Systems Technology 24(2), 594–608 (2015).  https://doi.org/10.1109/TCST.2015.2452230
  22. 22.
    Zgraggen, A. U., Fagiano, L., Morari, M.: Real-Time Optimization and Adaptation of the Crosswind Flight of Tethered Wings for Airborne Wind Energy. IEEE Transactions on Control Systems Technology 23(2), 434–448 (2015).  https://doi.org/10.1109/TCST.2014.2332537

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Rolf Luchsinger
    • 1
    • 2
  • Damian Aregger
    • 3
  • Florian Bezard
    • 2
  • Dino Costa
    • 1
    • 2
  • Cédric Galliot
    • 1
    • 2
  • Flavio Gohl
    • 1
    • 2
  • Jannis Heilmann
    • 1
  • Henrik Hesse
    • 4
  • Corey Houle
    • 1
    • 3
  • Tony A. Wood
    • 4
  • Roy S. Smith
    • 4
  1. 1.TwingTec AGDübendorfSwitzerland
  2. 2.EmpaCenter for Synergetic StructuresDübendorfSwitzerland
  3. 3.FHNWInstitute of Aerosol and Sensor TechnologyWindischSwitzerland
  4. 4.ETH ZurichAutomatic Control LaboratoryZurichSwitzerland

Personalised recommendations