Tether and Bridle Line Drag in Airborne Wind Energy Applications

Part of the Green Energy and Technology book series (GREEN)


This chapter discusses the physics of tether and bridle line drag based on literature, describes the typical flight regimes for airborne wind energy and identifies regimes of elevated drag caused by vortex-induced vibration and movement-induced excitation such as galloping. The presented laboratory tests show increases of aerodynamic drag due to vortex-induced vibration up to 300% and due to galloping up to 210%. Given that tether drag is a primary limitation to an airborne wind energy system’s ability to fly faster and produce more energy, understanding the regimes of elevated drag as well as the mechanisms to suppress the causing phenomena are important. The chapter provides a basic overview of these phenomena as well as potential solutions for drag reduction. The information and material presented should provide an airborne wind energy developer a useful introduction to the considerations of tether and bridle line aerodynamic drag.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bevirt, J.: Tether Sheaths and Aerodynamic Tether Assemblies. US Patent 0,266,395, 2011Google Scholar
  2. 2.
    Bishop, R. E. D., Hassan, A. Y.: The Lift and Drag Forces on a Circular Cylinder in a Flowing Fluid. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 277(1368), 51–57 (1964).  https://doi.org/10.1098/rspa.1964.0005
  3. 3.
    Blevins, R. D.: Flow Induced Vibration. 2nd ed. Krieger Publishing Company, Malabar, FL, USA (2001)Google Scholar
  4. 4.
    Bootle,W. J.: Forces on an inclined circular cylinder in supercritical flow. AIAA Journal 9(3), 514–516 (1971).  https://doi.org/10.2514/3.6213
  5. 5.
    Bosman, R., Reid, V., Vlasblom, M., Smeets, P.: Airborne Wind Energy Tethers with High-Modulus Polyethylene Fibers. In: Ahrens, U., Diehl, M., Schmehl, R. (eds.) Airborne Wind Energy, Green Energy and Technology, Chap. 33, pp. 563–585. Springer, Berlin Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39965-7_33
  6. 6.
    Breukels, J.: An Engineering Methodology for Kite Design. Ph.D. Thesis, Delft University of Technology, 2011. http://resolver.tudelft.nl/uuid:cdece38a-1f13-47cc-b277-ed64fdda7cdf
  7. 7.
    Cherubini, A., Papini, A., Vertechy, R., Fontana, M.: Airborne Wind Energy Systems: A review of the technologies. Renewable and Sustainable Energy Reviews 51, 1461–1476 (2015).  https://doi.org/10.1016/j.rser.2015.07.053
  8. 8.
    Drescher, H.: Messung der auf querangeströmte Zylinder ausgeübten zeitlich veränderten Drücke. Zeitschrift für Flugwissenschaften und Weltraumforschung 4, 17–21 (1956)Google Scholar
  9. 9.
    Dunker, S.: Experiments in Line Vibration and Associated Drag for Kites. AIAA Paper 2015-2154. In: Proceedings of the 23rd AIAA Aerodynamic Decelerator Systems Technology Conference, Daytona Beach, FL, USA, 30 Mar–2 Apr 2015.  https://doi.org/10.2514/6.2015-2154
  10. 10.
    Dunker, S.: Ram-Air Wing Design Considerations for Airborne Wind Energy. In: Ahrens, U., Diehl, M., Schmehl, R. (eds.) Airborne Wind Energy, Green Energy and Technology, Chap. 31, pp. 517–546. Springer, Berlin Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39965-7_31
  11. 11.
    Fage, A., Warsap, J. H.: Effects of turbulence and surface roughness on drag of circular cylinders. Reports and memoranda 1283, Aeronautical Research Committee, Oct 1929. http://naca.central.cranfield.ac.uk/reports/arc/rm/1283.pdf
  12. 12.
    Goldstein, L.: Airborne wind energy conversion systems with ultra high speed mechanical power transfer. In: Ahrens, U., Diehl, M., Schmehl, R. (eds.) Airborne Wind Energy, Green Energy and Technology, Chap. 13, pp. 235–247. Springer, Berlin Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39965-7_13
  13. 13.
    Griffin, O. M., Ramberg, S. E.: On vortex strength and drag in bluff-body wakes. Journal of Fluid Mechanics 69(04), 721 (1975).  https://doi.org/10.1017/s0022112075001656
  14. 14.
    Griffith, S., Lynn, P., Montague, D., Hardham, C.: Faired tether for wind power generation systems. Patent WO 2009/142762, 26 Nov 2009Google Scholar
  15. 15.
    Hoerner, S. F.: Fluid-Dynamic Drag. Bricktown, Brick Town, NJ, USA (1965)Google Scholar
  16. 16.
    Jung, T. P.: Wind Tunnel Study of Drag of Various Rope Designs. AIAA Paper 2009-3608. In: Proceedings of the 27th AIAA Applied Aerodynamics Conference, San Antonio, TX, USA, 22–25 June 2009.  https://doi.org/10.2514/6.2009-3608
  17. 17.
    Kim, J., Choi, H.: Distributed forcing of flow over a circular cylinder. Physics of Fluids 17, 033103 (2005).  https://doi.org/10.1063/1.1850151
  18. 18.
    King, R.: A review of vortex shedding research and its application. Ocean Engineering 4(3), 141–171 (1977).  https://doi.org/10.1016/0029-8018(77)90002-6
  19. 19.
    Lienhard, J. H.: Synopsis of lift, drag, and vortex frequency data for rigid circular cylinders. Research Division Bulletin 300, Washington State University, Pullmann, WA, USA, 1966. http://www.uh.edu/engines/vortexcylinders.pdf
  20. 20.
    Loyd, M. L.: Crosswind kite power. Journal of Energy 4(3), 106–111 (1980).  https://doi.org/10.2514/3.48021
  21. 21.
    Naudascher, E., Rockwell, D.: Flow-Induced Vibrations: An Engineering Guide, Chap. 2–3, 7, 9. A. A. Balkema Publishers, Rotterdam, The Netherlands (1994)Google Scholar
  22. 22.
    Nebres, J. V., Batill, S. M.: Flow around a cylinder with a spanwise large-scale surface perturbation. AIAA Paper 93-0657. In: Proceedings of the 31st Aerospace Sciences Meeting, Reno, NV, USA, 11–14 Jan 1993.  https://doi.org/10.2514/6.1993-657
  23. 23.
    Oudheusden, B. W. van: Investigations of an aeroelastic oscillator: Analysis of one-degreeof-freedom galloping with combined translational and torsional effects. LR-707, Delft University of Technology, Dec 1992. http://resolver.tudelft.nl/uuid:0d3c0eac-2bab-422a-9e0f-8c74da19dcd0
  24. 24.
    Sarpkaya, T.: Fluid Forces on Oscillating Cylinders. Journal of the Waterway, Port, Coastal and Ocean Division 104, 275–290 (1978)Google Scholar
  25. 25.
    Schlichting, H.: Boundary-layer theory. McGraw-Hill (1979)Google Scholar
  26. 26.
    Schmehl, R. (ed.): Book of Abstracts of the International Airborne Wind Energy Conference 2015. Delft University of Technology, Delft, The Netherlands (2015).  https://doi.org/10.4233/uuid:7df59b79-2c6b-4e30-bd58-8454f493bb09
  27. 27.
    Siefers, T. M., Campbell, J. P., Clark, D. K., McLaughlin, T. E., Bergeron, K.: Quantification of Drag from Flat Suspension Line for Parachutes and the Influence of Flow Induced Vibrations. AIAA Paper 2016-1777. In: Proceedings of the 54th AIAA Aerospace Sciences Meeting, San Diego, CA, USA, 4–8 Jan 2016.  https://doi.org/10.2514/6.2016-1777
  28. 28.
    Siefers, T., Greene, K., McLaughlin, T., Bergeron, K.: Wind and Water Tunnel Measurements of Parachute Suspension Line. AIAA Paper 2013-0064. In: Proceedings of 51st AIAA Aerospace Sciences Meeting, Grapevine (Dallas/Ft.Worth Region), TX, USA, 7–10 Jan 2013.  https://doi.org/10.2514/6.2013-64
  29. 29.
    Simpson, A.: Fluid-Dyamic Stability Aspects of Cables. In: Shaw, T. L. (ed.) Mechanics of Wave-Induced Forces on Cylinders, pp. 90–132. Pitman Publishing Ltd., London (1979)Google Scholar
  30. 30.
    Strouhal, V.: Ueber eine besondere Art der Tonerregung. Annalen der Physik und Chemie 5(10), 216–251 (1878). http://www.deutschestextarchiv.de/strouhal_tonerregung_1878
  31. 31.
    Tanida, Y., Okajima, A., Watanabe, Y.: Stability of a circular cylinder oscillating in uniform flow or in a wake. Journal of Fluid Mechanics 61(4), 769–784 (1973).  https://doi.org/10.1017/s0022112073000935
  32. 32.
    Toebes, G. H.: The Unsteady Flow and Wake Near an Oscillating Cylinder. ASME Journal of Basic Engineering 91(3), 493–502 (1969).  https://doi.org/10.1115/1.3571165
  33. 33.
    Tørum, A., Anand, N. M.: Free Span Vibrations of Submarine Pipelines in Steady Flows-Effect of Free-Stream Turbulence on Mean Drag Coefficients. Journal of Energy Resources Technology 107(4), 415–420 (1985).  https://doi.org/10.1115/1.3231212
  34. 34.
    Vlugt, R. van der, Peschel, J., Schmehl, R.: Design and Experimental Characterization of a Pumping Kite Power System. In: Ahrens, U., Diehl, M., Schmehl, R. (eds.) Airborne Wind Energy, Green Energy and Technology, Chap. 23, pp. 403–425. Springer, Berlin Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39965-7_23

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.A-Z Chuteworks LLCHoustonUSA

Personalised recommendations