Skip to main content

Multicopter-Based Launching and Landing of Lift Power Kites

  • Chapter
  • First Online:
Airborne Wind Energy

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Crosswind kite power is a promising alternative wind power technology. However, unlike the rotor blades of a conventional wind turbine, a kite needs to be launched prior to power generation and needs to be landed during low-wind conditions or for maintenance. This study proposes multicopter-based concepts for an autonomous solution. Basic system components and different system configurations are discussed. Static and dynamic feasibility analyses are carried out. Results show that such systems are feasible and have advantages compared to other launching and landing concepts. However, also the weaknesses of such systems become apparent e.g. the increased airborne mass.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Advance Thun AG: Alpha 6. http://www.advance.ch/de/alpha. Accessed 20 Jan 2016

  2. Ahrens, U., Diehl, M., Schmehl, R. (eds.): Airborne Wind Energy. Green Energy and Technology. Springer, Berlin Heidelberg (2013). https://doi.org/10.1007/978-3-642-39965-7

  3. Alula Energy Oy: Takeoff and landing system - Airborne Wind Energy and Tethered UAV. http://vimeo.com/78090844. Accessed 20 Jan 2016

  4. Bauer, F., Hackl, C. M., Smedley, K., Kennel, R.: On Multicopter-Based Launch and Retrieval Concepts for Lift Mode Operated Power Generating Kites. In: Schmehl, R. (ed.). Book of Abstracts of the International Airborne Wind Energy Conference 2015, pp. 92–93, Delft, The Netherlands, 15–16 June 2015. https://doi.org/10.4233/uuid:7df59b79-2c6b-4e30-bd58-8454f493bb09. Presentation video recording available from: https://collegerama.tudelft.nl/Mediasite/Play/a303417db9114a9f876819208bd889c71d

  5. Bontekoe, E.: How to Launch and Retrieve a Tethered Aircraft. M.Sc.Thesis, Delft University of Technology, 2010. http://resolver.tudelft.nl/uuid:0f79480b-e447-4828-b239-9ec6931bc01f

  6. Breukels, J.: Kite launch using an aerostat. Technical Report, Delft University of Technology, 21 Aug 2007. http://repository.tudelft.nl/view/ir/uuid%3A1a0c6dfd-6115-461f-ac04-bd8751efd6fb

  7. Brink, A. van den: Design of the e-50 Ground Station. In: Schmehl, R. (ed.). Book of Abstracts of the International Airborne Wind Energy Conference 2015, pp. 34–35, Delft, The Netherlands, 15–16 June 2015. https://doi.org/10.4233/uuid:7df59b79-2c6b-4e30-bd58-8454f493bb09. Presentation video recording available from: https://collegerama.tudelft.nl/Mediasite/Play/eec678673e7b4056961269ab59fd4d6b1d

  8. Cherubini, A., Papini, A., Vertechy, R., Fontana, M.: Airborne Wind Energy Systems: A review of the technologies. Renewable and Sustainable Energy Reviews 51, 1461–1476 (2015). https://doi.org/10.1016/j.rser.2015.07.053

  9. Conrad Electronic SE: Modellbau-Akkupack (LiPo) 22.2 V 5000 mAh 40 C. https://www.conrad.de/de/modellbau-akkupack-lipo-222-v-5000-mah-40-c-conrad-energy-offenekabelenden-239016.html. Accessed 20 Jan 2016

  10. Enerkite GmbH. http://www.enerkite.com/. Accessed 14 Jan 2016

  11. Erhard, M., Strauch, H.: Control of Towing Kites for Seagoing Vessels. IEEE Transactions on Control Systems Technology 21(5), 1629–1640 (2013). https://doi.org/10.1109/TCST.2012.2221093

  12. EvoLogics GmbH: Bionic Loop Propeller. http://www.evologics.de/en/products/propeller/index.html. Accessed 20 Jan 2016

  13. Fagiano, L., Zgraggen, A. U., Morari, M., Khammash, M.: Automatic crosswind flight of tethered wings for airborne wind energy:modeling, control design and experimental results. IEEE Transactions on Control System Technology 22(4), 1433–1447 (2014). https://doi.org/10.1109/TCST.2013.2279592

  14. Fagiano, L., Schnez, S.: The Take-Off of an Airborne Wind Energy System Based on Rigid Wings. In: Schmehl, R. (ed.). Book of Abstracts of the International Airborne Wind Energy Conference 2015, pp. 94–95, Delft, The Netherlands, 15–16 June 2015. https://doi.org/10.4233/uuid:7df59b79-2c6b-4e30-bd58-8454f493bb09. Presentation video recording available from: https://collegerama.tudelft.nl/Mediasite/Play/2ebb3eb4871a49b7ad70560644cb3e2c1d

  15. Fechner, U., Schmehl, R.: Design of a Distributed Kite Power Control System. In: Proceedings of the 2012 IEEE International Conference on Control Applications, pp. 800–805, Dubrovnik, Croatia, 3–5 Oct 2012. https://doi.org/10.1109/CCA.2012.6402695

  16. Filippone, A.: Advanced Aircraft Flight Performance. 1st ed. Cambridge University Press (2012). https://doi.org/10.1017/CBO9781139161893

  17. Geebelen, K., Ahmad, H., Vukov, M., Gros, S., Swevers, J., Diehl, M.: An experimental test set-up for launch/recovery of an Airborne Wind Energy (AWE) system. In: Proceedings of the 2012 American Control Conference, pp. 5813–5818, Montréal, QC, Canada, 27–29 June 2012. https://doi.org/10.1109/ACC.2012.6315033

  18. Geebelen, K.: Design and Operation of Airborne Wind Energy Systems.Experimental Validation of Moving Horizon Estimation for PoseEstimation. Ph.D. Thesis, KU Leuven, 2015. https://lirias.kuleuven.be/handle/123456789/485714

  19. Geebelen, K., Gillis, J.: Modelling and control of rotational start-up phase of tethered aeroplanes for wind energy harvesting. M.Sc.Thesis, KU Leuven, June 2010

    Google Scholar 

  20. Gillis, J., Goos, J., Geebelen, K., Swevers, J., Diehl, M.: Optimal periodic control of power harvesting tethered airplanes. In: Proceedings of the 2012 American Control Conference, pp. 2527–2532, Montréal, QC, Canada, 27–29 June 2012. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6314924

  21. Hardham, C.: Response to the Federal Aviation Authority. Docket No.: FAA-2011-1279; Notice No. 11-07; Notification for Airborne Wind Energy Systems (AWES), Makani Power, 7 Feb 2012. https://www.regulations.gov/#!documentDetail;D=FAA-2011-1279-0014

  22. Haug, S.: Design of a Kite Launch and Retrieval System For a Pumping High Altitude Wind Power Generator. M.Sc.Thesis, University of Stuttgart, 2012. https://doi.org/10.18419/opus-3936

  23. Houska, B., Diehl, M.: Optimal control for power generating kites. In: Proceedings of the 9th European Control Conference, pp. 3560–3567, Kos, Greece, 2–5 July 2007

    Google Scholar 

  24. IBC Solar AG: IBC FlexiSun 2,5/4/6/10/16 mm2 PV1-F. http://www.photovoltaik-shop.com/downloads/dl/file/id/312/solarkabel_ibc_flexisun_1x2_5_16mm_datenblatt_pdf.pdf. Accessed 20 Jan 2016

  25. Ippolito, M.: System and process for starting the flight of power wing airfoils, in particular for wind generator. Patent WO2014199406 A1, Dec 2014

    Google Scholar 

  26. Joby Motors, Inc.: JM1. http://www.jobymotors.com/public/views/pages/jm1.php. Accessed 20 Jan 2016

  27. KiteGen. http://kitegen.com. Accessed 20 Jan 2016

  28. Kitemill. http://kitemill.com. Accessed 20 Jan 2016

  29. KitePower. http://www.kitepower.eu. Accessed 29 Apr 2015

  30. Kruijff, M., Ruiterkamp, R.: Status and Development Plan of the PowerPlane of Ampyx Power. In: Schmehl, R. (ed.). Book of Abstracts of the International Airborne Wind Energy Conference 2015, pp. 18–21, Delft, The Netherlands, 15–16 June 2015. https://doi.org/10.4233/uuid:7df59b79-2c6b-4e30-bd58-8454f493bb09. Presentation video recording available from: https://collegerama.tudelft.nl/Mediasite/Play/2e1f967767d541b1b1f2c912e8eff7df1d

  31. Loyd, M. L.: Crosswind kite power. Journal of Energy 4(3), 106–111 (1980). https://doi.org/10.2514/3.48021

  32. Luchsinger, R. H. et al.: Closing the Gap: Pumping Cycle Kite Power with Twings. In: Schmehl, R. (ed.). Book of Abstracts of the International Airborne Wind Energy Conference 2015, pp. 26–28, Delft, The Netherlands, 15–16 June 2015. https://doi.org/10.4233/uuid:7df59b79-2c6b-4e30-bd58-8454f493bb09. Presentation video recording available from: https://collegerama.tudelft.nl/Mediasite/Play/646b794e7ac54320ba48ba9f41b41f811d

  33. Makani Power/Google. http://www.google.com/makani. Accessed 14 Jan 2016

  34. Moyes USA: Litespeed RS. http://www.moyesusa.com/products/litespeedRSspecs.html. Accessed 20 Jan 2016

  35. NTS Nature Technology Systems. http://www.x-wind.de/en/. Accessed 20 Jan 2016

  36. Schmehl, R.: Experimental setup for automatic launching and landing of a 25m2 traction kite. https://www.youtube.com/watch?v=w4oWs_zNpr8. Accessed 20 Jan 2016

  37. Schmehl, R.: Traction Power Generation with Tethered Wings - A Quasi-Steady Model for the Prediction of the Power Output. In: Schmehl, R. (ed.). Book of Abstracts of the International Airborne Wind Energy Conference 2015, pp. 38–39, Delft, The Netherlands, 15–16 June 2015. https://doi.org/10.4233/uuid:7df59b79-2c6b-4e30-bd58-8454f493bb09. Presentation video recording available from: https://collegerama.tudelft.nl/Mediasite/Play/02a6612b8d004580b08681efd10611351d

  38. Skysails GmbH. http://www.skysails.info. Accessed 14 Jan 2016

  39. Stoll, W., Fischer, M., Bormann, A., Skutnik, S.: CyberKite. http://www.festo.com/net/SupportPortal/Files/42084/CyberKite_en.pdf. Accessed 20 Jan 2016

  40. Suominen, I., Berg, T.: Method and System for Towing a Flying Object. PatentWO2013156680 A1, Oct 2013

    Google Scholar 

  41. Wortmann, S.: Mast arrangement and method for starting and landing an aerodynamic wing. Patent WO2013164446 A1, Nov 2013

    Google Scholar 

  42. Zanon, M., Gros, S., Andersson, J., Diehl, M.: Airborne Wind Energy Based on Dual Airfoils. IEEE Transactions on Control Systems Technology 21(4), 1215–1222 (2013). https://doi.org/10.1109/TCST.2013.2257781

Download references

Acknowledgements

The authors thank the anonymous reviewers for their helpful comments. This study was supported by Bund der Freunde der TU München e.V.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Bauer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bauer, F., Hackl, C.M., Smedley, K., Kennel, R.M. (2018). Multicopter-Based Launching and Landing of Lift Power Kites. In: Schmehl, R. (eds) Airborne Wind Energy. Green Energy and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-1947-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-1947-0_19

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-1946-3

  • Online ISBN: 978-981-10-1947-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics