Advertisement

Crosswind Kite Power with Tower

  • Florian Bauer
  • Christoph M. Hackl
  • Keyue Smedley
  • Ralph M. Kennel
Chapter
Part of the Green Energy and Technology book series (GREEN)

Abstract

Crosswind kite power replaces the tower and the support structure of a conventional wind turbine by a lightweight tether leading to a potentially lower levelized cost of electricity. However, in this chapter it is shown that tethering the kite to the top of a tower instead of to the ground can have advantages: Most notably, the “cosine loss” is reduced, i.e. the misalignment of the wind velocity vector and the direction of the traction power transfer. Hence, a tower can increase the power and energy yield up to about the double. Even for small tower heights compared to the kite’s operation altitude, a significant efficiency increase can be obtained. Further advantages of a tower are highlighted e.g. for the autonomous start and landing and for the wind velocity measurement. Possible tower concepts are illustrated.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors thank the anonymous reviewers and the editors for their helpful comments. This study was supported by Bund der Freunde der TU München e.V.

References

  1. 1.
    Ahrens, U., Diehl, M., Schmehl, R. (eds.): Airborne Wind Energy. Green Energy and Technology. Springer, Berlin Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39965-7
  2. 2.
    Bevirt, J. B.: Apparatus for generating power using jet stream wind power. US Patent 20,100,032,947, Feb 2010Google Scholar
  3. 3.
    Bontekoe, E.: How to Launch and Retrieve a Tethered Aircraft. M.Sc.Thesis, Delft University of Technology, 2010. http://resolver.tudelft.nl/uuid:0f79480b-e447-4828-b239-9ec6931bc01f
  4. 4.
    Burton, T., Sharpe, D., Jenkins, N., Bossanyi, E.: Wind Energy Handbook. JohnWiley & Sons, Ltd, Chichester (2001).  https://doi.org/10.1002/0470846062
  5. 5.
    Cherubini, A., Papini, A., Vertechy, R., Fontana, M.: Airborne Wind Energy Systems: A review of the technologies. Renewable and Sustainable Energy Reviews 51, 1461–1476 (2015).  https://doi.org/10.1016/j.rser.2015.07.053
  6. 6.
    Diehl, M.: Airborne Wind Energy: Basic Concepts and Physical Foundations. In: Ahrens, U., Diehl, M., Schmehl, R. (eds.) Airborne Wind Energy, Green Energy and Technology, Chap. 1, pp. 3–22. Springer, Berlin Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39965-7_1
  7. 7.
    Diehl, M., Horn, G., Zanon, M.: Multiple Wing Systems – an Alternative to Upscaling? In: Schmehl, R. (ed.). Book of Abstracts of the International Airborne Wind Energy Conference 2015, p. 96, Delft, The Netherlands, 15–16 June 2015.  https://doi.org/10.4233/uuid:7df59b79-2c6b-4e30-bd58-8454f493bb09. Presentation video recording available from: https://collegerama.tudelft.nl/Mediasite/Play/1065c6e340d84dc491c15da533ee1a671d
  8. 8.
    Enerkite GmbH. http://www.enerkite.com/. Accessed 14 Jan 2016
  9. 9.
    Erhard, M., Strauch, H.: Control of Towing Kites for Seagoing Vessels. IEEE Transactions on Control Systems Technology 21(5), 1629–1640 (2013).  https://doi.org/10.1109/TCST.2012.2221093
  10. 10.
    Fagiano, L.: Control of tethered airfoils for high-altitude wind energy generation. Ph.D. Thesis, Politecnico di Torino, 2009. http://hdl.handle.net/11311/1006424
  11. 11.
    Fagiano, L., Milanese, M.: Airborne Wind Energy: an overview. In: Proceedings of the 2012 American Control Conference, pp. 3132–3143, Montréal, QC, Canada, 27–29 June 2012.  https://doi.org/10.1109/ACC.2012.6314801
  12. 12.
    Fagiano, L., Schnez, S.: The Take-Off of an Airborne Wind Energy System Based on Rigid Wings. In: Schmehl, R. (ed.). Book of Abstracts of the International Airborne Wind Energy Conference 2015, pp. 94–95, Delft, The Netherlands, 15–16 June 2015.  https://doi.org/10.4233/uuid:7df59b79-2c6b-4e30-bd58-8454f493bb09. Presentation video recording available from: https://collegerama.tudelft.nl/Mediasite/Play/2ebb3eb4871a49b7ad70560644cb3e2c1d
  13. 13.
    Geebelen, K., Gillis, J.: Modelling and control of rotational start-up phase of tethered aeroplanes for wind energy harvesting. M.Sc.Thesis, KU Leuven, June 2010Google Scholar
  14. 14.
    Hardham, C.: Response to the Federal Aviation Authority. Docket No.: FAA-2011-1279; Notice No. 11-07; Notification for Airborne Wind Energy Systems (AWES), Makani Power, 7 Feb 2012. https://www.regulations.gov/#!documentDetail;D=FAA-2011-1279-0014
  15. 15.
    Houska, B., Diehl, M.: Optimal control for power generating kites. In: Proceedings of the 9th European Control Conference, pp. 3560–3567, Kos, Greece, 2–5 July 2007Google Scholar
  16. 16.
    Joby Energy. http://www.jobyenergy.com/. Accessed 14 Jan 2016
  17. 17.
    Kruijff, M., Ruiterkamp, R.: Status and Development Plan of the PowerPlane of Ampyx Power. In: Schmehl, R. (ed.). Book of Abstracts of the International Airborne Wind Energy Conference 2015, pp. 18–21, Delft, The Netherlands, 15–16 June 2015.  https://doi.org/10.4233/uuid:7df59b79-2c6b-4e30-bd58-8454f493bb09. Presentation video recording available from: https://collegerama.tudelft.nl/Mediasite/Play/2e1f967767d541b1b1f2c912e8eff7df1d
  18. 18.
    Kulunk, E.: Aerodynamics of Wind Turbines. INTECH Open Access Publisher (2011).  https://doi.org/10.5772/17854
  19. 19.
  20. 20.
    Loyd, M. L.: Crosswind kite power. Journal of Energy 4(3), 106–111 (1980).  https://doi.org/10.2514/3.48021
  21. 21.
    Makani Power/Google. http://www.google.com/makani. Accessed 14 Jan 2016
  22. 22.
    Schmehl, R., Noom, M., Vlugt, R. van der: Traction Power Generation with Tethered Wings. In: Ahrens, U., Diehl, M., Schmehl, R. (eds.) Airborne Wind Energy, Green Energy and Technology, Chap. 2, pp. 23–45. Springer, Berlin Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39965-7_2
  23. 23.
    Skysails GmbH. http://www.skysails.info. Accessed 14 Jan 2016
  24. 24.
    Vander Lind, D.: Analysis and Flight Test Validation of High Performance Airborne Wind Turbines. In: Ahrens, U., Diehl, M., Schmehl, R. (eds.) Airborne Wind Energy, Green Energy and Technology, Chap. 28, pp. 473–490. Springer, Berlin Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39965-7_28
  25. 25.
    Vander Lind, D.: Developing a 600 kW Airborne Wind Turbine. In: Schmehl, R. (ed.). Book of abstracts of the International Airborne Wind Energy Conference 2015, pp. 14–17, Delft, The Netherlands, 15–16 June 2015.  https://doi.org/10.4233/uuid:7df59b79-2c6b-4e30-bd58-8454f493bb09. Presentation video recording available from: https://collegerama.tudelft.nl/Mediasite/Play/639f1661d28e483cb75a9a8bdedce6f11d

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Florian Bauer
    • 1
  • Christoph M. Hackl
    • 2
  • Keyue Smedley
    • 3
  • Ralph M. Kennel
    • 1
  1. 1.Institute for Electrical Drive Systems and Power ElectronicsTechnical University of MunichMunichGermany
  2. 2.Munich School of Engineering, Research group “Control of renewable energy systems (CRES)”Technische Universität MünchenGarchingGermany
  3. 3.The Henry Samueli School of Engineering, Power Electronics LaboratoryUniversity of CaliforniaIrvineUSA

Personalised recommendations