Advertisement

Design and Economics of a Pumping Kite Wind Park

  • Pietro Faggiani
  • Roland Schmehl
Chapter
Part of the Green Energy and Technology book series (GREEN)

Abstract

The development of airborne wind energy is steadily progressing towards the market introduction of the technology. Even though the physical foundations of the various conversion concepts are well understood, the actual economic potential of distributed small-scale and centralized large-scale power generation under realworld conditions is still under investigation. In the present chapter we consider the clustering of units into a large kite wind park, specifically the spatial arrangement and collective operation. The analysis starts from a quasi-steady flight model of the kite to estimate the power production in pumping cycle operation. From the surface area and aerodynamic properties of the kite all other system parameters are determined. A genetic algorithm is used to optimize the operation of a single unit and to derive its power curve. Based on this information multiple interconnected units are simulated and an economic model is added. The results show that a coordinated collective operation not only achieves a continuous net electricity output, but also decreases the LCOE from 106 to 96 €/Mwh as consequence of economic scale effects. The prediction supports the substantial economic potential of pumping kite wind parks for large-scale power generation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The financial support of the European Commission through the projects AWESCO (H2020-ITN-642682) and REACH (H2020-FTIPilot-691173) is gratefully acknowledged.

References

  1. 1.
    Argatov, I., Rautakorpi, P., Silvennoinen, R.: Estimation of the mechanical energy output of the kite wind generator. Renewable Energy 34(6), 1525–1532 (2009).  https://doi.org/10.1016/j.renene.2008.11.001
  2. 2.
    Argatov, I., Shafranov, V.: Economic assessment of small-scale kite wind generators. Renewable Energy 89, 125–134 (2016).  https://doi.org/10.1016/j.renene.2015.12.020
  3. 3.
    Bloomberg New Energy Finance: Shell will test energy-generating kites this summer. BNEF Blog, 26 May 2017. https://about.bnef.com/blog/shell-will-test-energy-generating-kitesthis-summer/ Accessed 30 May 2017
  4. 4.
    Bosch, A., Schmehl, R., Tiso, P., Rixen, D.: Dynamic nonlinear aeroelastic model of a kite for power generation. AIAA Journal of Guidance, Control and Dynamics 37(5), 1426–1436 (2014).  https://doi.org/10.2514/1.G000545
  5. 5.
    Cherubini, A., Papini, A., Vertechy, R., Fontana, M.: Airborne Wind Energy Systems: A review of the technologies. Renewable and Sustainable Energy Reviews 51, 1461–1476 (2015).  https://doi.org/10.1016/j.rser.2015.07.053
  6. 6.
    Coleman, J., Ahmad, H., Pican, E., Toal, D.: Modelling of a synchronous offshore pumping mode airborne wind energy farm. Energy 71, 569–578 (2014).  https://doi.org/10.1016/j.energy.2014.04.110
  7. 7.
    Costello, S., Costello, C., François, G., Bonvin, D.: Analysis of the maximum efficiency of kite-power systems. Journal of Renewable and Sustainable Energy 7(5), 053108 (2015).  https://doi.org/10.1063/1.4931111
  8. 8.
    De Lellis, M., Mendonça, A. K., Saraiva, R., Trofino, A., Lezana, Á.: Electric power generation in wind farms with pumping kites: An economical analysis. Renewable Energy 86, 163–172 (2016).  https://doi.org/10.1016/j.renene.2015.08.002
  9. 9.
    Erhard, M., Strauch, H.: Theory and Experimental Validation of a Simple Comprehensible Model of Tethered Kite Dynamics Used for Controller Design. In: Ahrens, U., Diehl, M., Schmehl, R. (eds.) Airborne Wind Energy, Green Energy and Technology, Chap. 8, pp. 141–165. Springer, Berlin Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39965-7_8
  10. 10.
    Faggiani, P.: Pumping Kites Wind Farm. M.Sc.Thesis, Delft University of Technology, 2015. http://resolver.tudelft.nl/uuid:66cddbd2-5f50-4fc7-be0b-468853128f37
  11. 11.
    Faggiani, P., Schmehl, R. S., Vlugt, R. van der: Pumping Kites Wind Farm. In: Schmehl, R. (ed.). Book of Abstracts of the International Airborne Wind Energy Conference 2015, pp. 102–103, Delft, The Netherlands, 15–16 June 2015.  https://doi.org/10.4233/uuid:7df59b79-2c6b-4e30-bd58-8454f493bb09. Poster available from: http://www.awec2015.com/images/posters/AWEC15_Faggiani-poster.pdf
  12. 12.
    Fechner, U., Schmehl, R.: Model-Based Efficiency Analysis of Wind Power Conversion by a Pumping Kite Power System. In: Ahrens, U., Diehl, M., Schmehl, R. (eds.) Airborne Wind Energy, Green Energy and Technology, Chap. 14, pp. 249–269. Springer, Berlin Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39965-7_14
  13. 13.
    Fechner, U., Schmehl, R.: Flight Path Control of Kite Power Systems in a Turbulent Wind Environment. In: Proceedings of the 2016 American Control Conference (ACC), pp. 4083–4088, Boston, MA, USA, 6–8 July 2016.  https://doi.org/10.1109/ACC.2016.7525563
  14. 14.
    Goldstein, L.: Density of Individual Airborne Wind Energy Systems in AWES Farms. http://www.awelabs.com/wp-content/uploads/AWES_Farm_Density.pdf (2014). Accessed 19 May 2016
  15. 15.
    Grete, C.: The Economic Potential of Kite Power. Journal of the Society of Aerospace Engineering Students VSV Leonardo da Vinci October, 10–11 (2014). http://resolver.tudelft.nl/uuid:f852545f-2946-4556-9ef8-0b5cdbdaf289
  16. 16.
    Heilmann, J.: Technical and Economic Potential of Airborne Wind Energy. M.Sc.Thesis, Utrecht University, 2012. http://dspace.library.uu.nl/handle/1874/258716
  17. 17.
    Heilmann, J., Houle, C.: Economics of Pumping Kite Generators. In: Ahrens, U., Diehl, M., Schmehl, R. (eds.) AirborneWind Energy, Green Energy and Technology, Chap. 15, pp. 271–284. Springer, Berlin Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39965-7_15
  18. 18.
    Loyd, M. L.: Crosswind kite power. Journal of Energy 4(3), 106–111 (1980).  https://doi.org/10.2514/3.48021
  19. 19.
    Luchsinger, R. H.: Pumping Cycle Kite Power. In: Ahrens, U., Diehl, M., Schmehl, R. (eds.) Airborne Wind Energy, Green Energy and Technology, Chap. 3, pp. 47–64. Springer, Berlin Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39965-7_3
  20. 20.
    OECD/NEA/IEA: Projected Costs of Generating Electricity 2010, OECD Publishing, Paris, 2010. 218 pp.  https://doi.org/10.1787/9789264084315-en
  21. 21.
    Schmehl, R.: Traction Power Generation with Tethered Wings - A Quasi-Steady Model for the Prediction of the Power Output. In: Schmehl, R. (ed.). Book of Abstracts of the International Airborne Wind Energy Conference 2015, pp. 38–39, Delft, The Netherlands, 15–16 June 2015.  https://doi.org/10.4233/uuid:7df59b79-2c6b-4e30-bd58-8454f493bb09. Presentation video recording available from: https://collegerama.tudelft.nl/Mediasite/Play/02a6612b8d004580b08681efd10611351d
  22. 22.
    Schmehl, R., Noom, M., Vlugt, R. van der: Traction Power Generation with Tethered Wings. In: Ahrens, U., Diehl, M., Schmehl, R. (eds.) Airborne Wind Energy, Green Energy and Technology, Chap. 2, pp. 23–45. Springer, Berlin Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39965-7_2
  23. 23.
    TKI Wind op Zee: Exploratory Research and LCOE of Airborne Offshore Wind Farm, Project Number TEWZ116048. https://topsectorenergie.nl/tki-wind-op-zee/exploratory-researchand-lcoe-airborne-offshore-wind-farm (2017). Accessed 1 June 2017
  24. 24.
    Vlugt, R. van der, Bley, A., Schmehl, R., Noom, M.: Quasi-Steady Model of a Pumping Kite Power System. Submitted to Renewable Energy (2017). arXiv:1705.04133 [cs.SY]
  25. 25.
    Vlugt, R. van der, Peschel, J., Schmehl, R.: Design and Experimental Characterization of a Pumping Kite Power System. In: Ahrens, U., Diehl, M., Schmehl, R. (eds.) Airborne Wind Energy, Green Energy and Technology, Chap. 23, pp. 403–425. Springer, Berlin Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39965-7_23
  26. 26.
    Zaaijer, M.: Great Expectations for Offshore Wind Turbines. Ph.D. Thesis, Delft Univeristy of Technology, 2013.  https://doi.org/10.4233/uuid:fd689ba2-3c5f-4e7c-9ccd-55ddbf1679bd

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Faculty of Aerospace EngineeringDelft University of TechnologyDelftThe Netherlands

Personalised recommendations