Advertisement

Flight Path Planning in a Turbulent Wind Environment

  • Uwe Fechner
  • Roland Schmehl
Part of the Green Energy and Technology book series (GREEN)

Abstract

To achieve a high conversion efficiency and at the same time robust control of a pumping kite power system it is crucial to optimize the three-dimensional flight path of the tethered wing. This chapter extends a dynamic system model to account for a realistic, turbulent wind environment and adds a flight path planner using a sequence of attractor points and turn actions. Path coordinates are calculated with explicit geometric formulas. To optimize the power output the path is adapted to the average wind speed and the vertical wind profile, using a small set of parameters. The planner employs a finite state machine with switch conditions that are highly robust towards sensor errors. The results indicate, that the decline of the average power output of pumping kite power systems at high wind speeds can be mitigated. In addition it is shown, that reeling out towards the zenith after flying figure eight flight maneuvers significantly reduces the traction forces during reel-in and thus increases the total efficiency.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The financial support of the European Commission through the projects AWESCO (H2020-ITN-642682) and REACH (H2020-FTIPilot-691173) is gratefully acknowledged.

References

  1. 1.
    Archer, C. L., Jacobson, M. Z.: Evaluation of global wind power. Journal of Geophysical Research: Atmospheres 110(D12), 1–20 (2005).  https://doi.org/10.1029/2004JD005462
  2. 2.
    Baayen, J. H., Ockels, W. J.: Tracking control with adaption of kites. IET Control Theory and Applications 6(2), 182–191 (2012).  https://doi.org/10.1049/iet-cta.2011.0037
  3. 3.
    Bosch, A., Schmehl, R., Tiso, P., Rixen, D.: Dynamic nonlinear aeroelastic model of a kite for power generation. AIAA Journal of Guidance, Control and Dynamics 37(5), 1426–1436 (2014).  https://doi.org/10.2514/1.G000545
  4. 4.
    Breukels, J.: An Engineering Methodology for Kite Design. Ph.D. Thesis, Delft University of Technology, 2011. http://resolver.tudelft.nl/uuid:cdece38a-1f13-47cc-b277-ed64fdda7cdf
  5. 5.
    Cherubini, A., Papini, A., Vertechy, R., Fontana, M.: Airborne Wind Energy Systems: A review of the technologies. Renewable and Sustainable Energy Reviews 51, 1461–1476 (2015).  https://doi.org/10.1016/j.rser.2015.07.053
  6. 6.
    Erhard, M., Strauch, H.: Theory and Experimental Validation of a Simple Comprehensible Model of Tethered Kite Dynamics Used for Controller Design. In: Ahrens, U., Diehl, M., Schmehl, R. (eds.) Airborne Wind Energy, Green Energy and Technology, Chap. 8, pp. 141–165. Springer, Berlin Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39965-7_8
  7. 7.
    Erhard, M., Strauch, H.: Control of Towing Kites for Seagoing Vessels. IEEE Transactions on Control Systems Technology 21(5), 1629–1640 (2013).  https://doi.org/10.1109/TCST.2012.2221093
  8. 8.
    Fagiano, L., Zgraggen, A. U., Morari, M., Khammash, M.: Automatic crosswind flight of tethered wings for airborne wind energy:modeling, control design and experimental results. IEEE Transactions on Control System Technology 22(4), 1433–1447 (2014).  https://doi.org/10.1109/TCST.2013.2279592
  9. 9.
    Fechner, U., Schmehl, R.: Model-Based Efficiency Analysis of Wind Power Conversion by a Pumping Kite Power System. In: Ahrens, U., Diehl, M., Schmehl, R. (eds.) Airborne Wind Energy, Green Energy and Technology, Chap. 14, pp. 249–269. Springer, Berlin Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39965-7_14
  10. 10.
    Fechner, U., Vlugt, R. van der, Schreuder, E., Schmehl, R.: Dynamic Model of a Pumping Kite Power System. Renewable Energy (2015).  https://doi.org/10.1016/j.renene.2015.04.028. arXiv:1406.6218 [cs.SY]
  11. 11.
    Fechner, U.: A Methodology for the Design of Kite-Power Control Systems. Ph.D. Thesis, Delft University of Technology, 2016.  https://doi.org/10.4233/uuid:85efaf4c-9dce-4111-bc91-7171b9da4b77
  12. 12.
    Fechner, U., Schmehl, R.: Flight Path Control of Kite Power Systems in a Turbulent Wind Environment. In: Proceedings of the 2016 American Control Conference (ACC), pp. 4083–4088, Boston, MA, USA, 6–8 July 2016.  https://doi.org/10.1109/ACC.2016.7525563
  13. 13.
    Fechner, U., Schmehl, R.: Flight Path Planning in a TurbulentWind Environment. In: Schmehl, R. (ed.). Book of Abstracts of the International Airborne Wind Energy Conference 2015, pp. 56–57, Delft, The Netherlands, 15–16 June 2015.  https://doi.org/10.4233/uuid:7df59b79-2c6b-4e30-bd58-8454f493bb09. Presentation video recording available from: https://collegerama.tudelft.nl/Mediasite/Play/0856a922984242c58bd46c84db3d320f1d
  14. 14.
    Gros, S., Zanon, M., Diehl, M.: A relaxation strategy for the optimization of Airborne Wind Energy systems. In: Proceedings of the 2013 European Control Conference (ECC), pp. 1011–1016, Zurich, Switzerland, 17–19 July 2013Google Scholar
  15. 15.
    Horn, G., Gros, S., Diehl, M.: Numerical Trajectory Optimization for Airborne Wind Energy Systems Described by High Fidelity Aircraft Models. In: Ahrens, U., Diehl, M., Schmehl, R. (eds.) Airborne Wind Energy, Green Energy and Technology, Chap. 11, pp. 205–218. Springer, Berlin Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39965-7_11
  16. 16.
    International Electrotechnical Commission: Power performance measurements of electricity producing wind turbines, IEC Standard 61400-12-1:2005(E)Google Scholar
  17. 17.
    Jehle, C.: Automatic Flight Control of Tethered Kites for Power Generation. M.Sc.Thesis, Technical University of Munich, Germany, 2012. https://mediatum.ub.tum.de/doc/1185997/1185997.pdf
  18. 18.
    Jehle, C., Schmehl, R.: Applied Tracking Control for Kite Power Systems. AIAA Journal of Guidance, Control, and Dynamics 37(4), 1211–1222 (2014).  https://doi.org/10.2514/1.62380
  19. 19.
    Mann, J.: The spatial structure of neutral atmospheric surface-layer turbulence. Journal of Fluid Mechanics 273, 141 (1994).  https://doi.org/10.1017/S0022112094001886
  20. 20.
    Mann, J.:Wind field simulation. Probabilistic Engineering Mechanics 13(4), 269–282 (1998).  https://doi.org/10.1016/s0266-8920(97)00036-2
  21. 21.
    Ruiterkamp, R., Sieberling, S.: Description and Preliminary Test Results of a Six Degrees of Freedom Rigid Wing Pumping System. In: Ahrens, U., Diehl, M., Schmehl, R. (eds.) Airborne Wind Energy, Green Energy and Technology, Chap. 26, pp. 443–458. Springer, Berlin Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39965-7_26
  22. 22.
    Schmehl, R., Vlugt, R. van der, Fechner, U., Wachter, A. de, Ockels, W.: Airborne Wind Energy System. Dutch Patent Application 2,009,528, Mar 2014Google Scholar
  23. 23.
    Schmehl, R., Noom, M., Vlugt, R. van der: Traction Power Generation with Tethered Wings. In: Ahrens, U., Diehl, M., Schmehl, R. (eds.) Airborne Wind Energy, Green Energy and Technology, Chap. 2, pp. 23–45. Springer, Berlin Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39965-7_2
  24. 24.
    The Royal Netherlands Meteorological Institute (KNMI): Cabauw Tower Meteorological Profiles. CESAR Database. http://www.cesar-database.nl (2011). Accessed 30 May 2016
  25. 25.
    Vlugt, R. van der, Bley, A., Schmehl, R., Noom, M.: Quasi-Steady Model of a Pumping Kite Power System. Submitted to Renewable Energy (2017). arXiv:1705.04133 [cs.SY]
  26. 26.
    Vlugt, R. van der, Peschel, J., Schmehl, R.: Design and Experimental Characterization of a Pumping Kite Power System. In: Ahrens, U., Diehl, M., Schmehl, R. (eds.) Airborne Wind Energy, Green Energy and Technology, Chap. 23, pp. 403–425. Springer, Berlin Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39965-7_23
  27. 27.
    Zgraggen, A. U., Fagiano, L., Morari, M.: Automatic Retraction and Full-Cycle Operation for a Class of Airborne Wind Energy Generators. IEEE Transactions on Control Systems Technology 24(2), 594–608 (2015).  https://doi.org/10.1109/TCST.2015.2452230
  28. 28.
    Zgraggen, A. U., Fagiano, L., Morari, M.: Automatic Retraction Phase of Airborne Wind Energy Systems. Proceedings of the 19th IFAC World Congress 47(3), 5826–5831 (2014).  https://doi.org/10.3182/20140824-6-za-1003.00624
  29. 29.
    Zgraggen, A. U., Fagiano, L., Morari, M.: On real-time optimization of airborne wind energy generators. In: Proceedings of the 52nd IEEE Conference on Decision and Control, pp. 385–390, IEEE, Firenze, Italy, 10–13 Dec 2013.  https://doi.org/10.1109/CDC.2013.6759912
  30. 30.
    Zgraggen, A. U., Fagiano, L., Morari, M.: Real-Time Optimization and Adaptation of the Crosswind Flight of Tethered Wings for Airborne Wind Energy. IEEE Transactions on Control Systems Technology 23(2), 434–448 (2015).  https://doi.org/10.1109/TCST.2014.2332537

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Faculty of Aerospace EngineeringDelft University of TechnologyDelftThe Netherlands

Personalised recommendations