Optimization of Pumping Cycles for Power Kites

  • Marcelo De Lellis
  • Ramiro Saraiva
  • Alexandre Trofino
Chapter
Part of the Green Energy and Technology book series (GREEN)

Abstract

The main contribution of this chapter is the formulation of an optimization problem to find the set of parameters of two decentralized control schemes—one for the wing flight and another for the ground winch—that maximizes the cycle power of a pumping kite. The pumping cycle consists of two phases, traction (reel-out) and retraction (reel-in), with predefined trajectories. The optimization takes into account constraints of reel speed saturation and minimum angle of attack, and can be applied to any wing with de-powering capability and given aerodynamic curves. The solution is computed through an iterative algorithm that uses a model of massless kite in dynamic equilibrium for the traction phase, and a dynamic 2D point mass model for the retraction phase. Other contributions are a discussion on the influence of the tether drag on the optimal angle of attack, and how the base angle of attack affects the average angle of attack. All results are validated by simulations with a dynamic 3D point mass kite model.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors would like to thank the reviewers for the helpful comments. This work was supported by the Brazilian government through CNPq under grants 480931/2013-5 and 406996/2013-0, and CAPES.

References

  1. 1.
    Baayen, J. H., Ockels, W. J.: Tracking control with adaption of kites. IET Control Theory and Applications 6(2), 182–191 (2012).  https://doi.org/10.1049/iet-cta.2011.0037
  2. 2.
    Bakule, L.: Decentralized control: An overview. Annual Reviews in Control 32(1), 87–98 (2008).  https://doi.org/10.1016/j.arcontrol.2008.03.004
  3. 3.
    Bosch, A., Schmehl, R., Tiso, P., Rixen, D.: Dynamic nonlinear aeroelastic model of a kite for power generation. AIAA Journal of Guidance, Control and Dynamics 37(5), 1426–1436 (2014).  https://doi.org/10.2514/1.G000545
  4. 4.
    Breukels, J.: An Engineering Methodology for Kite Design. Ph.D. Thesis, Delft University of Technology, 2011. http://resolver.tudelft.nl/uuid:cdece38a-1f13-47cc-b277-ed64fdda7cdf
  5. 5.
    Canale, M., Fagiano, L., Milanese, M.: KiteGen: A revolution in wind energy generation. Energy 34(3), 355–361 (2009).  https://doi.org/10.1016/j.energy.2008.10.003
  6. 6.
    De Lellis, M., Saraiva, R., Trofino, A.: On the Optimisation of Pumping Kites for Wind Power. In: Schmehl, R. (ed.). Book of Abstracts of the International Airborne Wind Energy Conference 2015, p. 63, Delft, The Netherlands, 15–16 June 2015.  https://doi.org/10.4233/uuid:7df59b79-2c6b-4e30-bd58-8454f493bb09. Presentation video recording available from: https://collegerama.tudelft.nl/Mediasite/Play/bde2b8dbc269407cbfa987b1c680eec71d
  7. 7.
    De Lellis, M., Saraiva, R., Trofino, A.: Turning angle control of power kites for wind energy. In: Proceedings of the 52nd Annual Conference on Decision and Control (CDC), pp. 3493–3498, Firenze, Italy, 10–13 Dec 2013.  https://doi.org/10.1109/CDC.2013.6760419
  8. 8.
    Diehl, M.: Real-time optimization for large scale nonlinear processes. Ph.D. Thesis, University of Heidelberg, 2001. http://archiv.ub.uni-heidelberg.de/volltextserver/1659/
  9. 9.
    Erhard, M., Strauch, H.: Flight control of tethered kites in autonomous pumping cycles for airborne wind energy. Control Engineering Practice 40, 13–26 (2015).  https://doi.org/10.1016/j.conengprac.2015.03.001
  10. 10.
    Fagiano, L.: Control of tethered airfoils for high-altitude wind energy generation. Ph.D. Thesis, Politecnico di Torino, 2009. http://hdl.handle.net/11311/1006424
  11. 11.
    Fagiano, L., Zgraggen, A. U., Morari, M., Khammash, M.: Automatic crosswind flight of tethered wings for airborne wind energy:modeling, control design and experimental results. IEEE Transactions on Control System Technology 22(4), 1433–1447 (2014).  https://doi.org/10.1109/TCST.2013.2279592
  12. 12.
    Fagiano, L., Marks, T.: Design of a Small-Scale Prototype for Research in Airborne Wind Energy. IEEE/ASME Transactions on Mechatronics 20(1), 166–177 (2015).  https://doi.org/10.1109/TMECH.2014.2322761
  13. 13.
    Fechner, U., Schmehl, R.: Model-Based Efficiency Analysis of Wind Power Conversion by a Pumping Kite Power System. In: Ahrens, U., Diehl, M., Schmehl, R. (eds.) Airborne Wind Energy, Green Energy and Technology, Chap. 14, pp. 249–269. Springer, Berlin Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39965-7_14
  14. 14.
    Fechner, U., Vlugt, R. van der, Schreuder, E., Schmehl, R.: Dynamic Model of a Pumping Kite Power System. Renewable Energy (2015).  https://doi.org/10.1016/j.renene.2015.04.028. arXiv:1406.6218 [cs.SY]
  15. 15.
    Goldstein, L.: Theoretical analysis of an airborne wind energy conversion system with a ground generator and fast motion transfer. Energy, 987–995 (2013).  https://doi.org/10.1016/j.energy.2013.03.087
  16. 16.
    Houska, B., Diehl, M.: Optimal control for power generating kites. In: Proceedings of the 9th European Control Conference, pp. 3560–3567, Kos, Greece, 2–5 July 2007Google Scholar
  17. 17.
    Ilzhöfer, A., Houska, B., Diehl, M.: Nonlinear MPC of kites under varying wind conditions for a new class of large-scale wind power generators. International Journal of Robust and Nonlinear Control 17(17), 1590–1599 (2007).  https://doi.org/10.1002/rnc.1210
  18. 18.
    Jehle, C., Schmehl, R.: Applied Tracking Control for Kite Power Systems. AIAA Journal of Guidance, Control, and Dynamics 37(4), 1211–1222 (2014).  https://doi.org/10.2514/1.62380
  19. 19.
    Lansdorp, B., Williams, P.: The Laddermill - Innovative Wind Energy from High Altitudes in Holland and Australia. In: Proceedings of Global Windpower 06, Adelaide, Australia, 18–21 Sept 2006. http://resolver.tudelft.nl/uuid:9ebe67f0-5b2a-4b99-8a3d-dbe758e53022
  20. 20.
    Loyd, M. L.: Crosswind kite power. Journal of Energy 4(3), 106–111 (1980).  https://doi.org/10.2514/3.48021
  21. 21.
    Luchsinger, R. H.: Pumping Cycle Kite Power. In: Ahrens, U., Diehl, M., Schmehl, R. (eds.) Airborne Wind Energy, Green Energy and Technology, Chap. 3, pp. 47–64. Springer, Berlin Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39965-7_3
  22. 22.
    Makani Power Inc. http://www.makanipower.com. Accessed 4 July 2013
  23. 23.
    Ockels, W. J.: Laddermill, a novel concept to exploit the energy in the airspace. Journal of Aircraft Design 4(2-3), 81–97 (2001).  https://doi.org/10.1016/s1369-8869(01)00002-7
  24. 24.
    Paulig, X., Bungart, M., Specht, B.: Conceptual Design of Textile Kites Considering Overall System Performance. In: Ahrens, U., Diehl, M., Schmehl, R. (eds.) Airborne Wind Energy, Green Energy and Technology, Chap. 32, pp. 547–562. Springer, Berlin Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39965-7_32
  25. 25.
    Schmehl, R., Noom, M., Vlugt, R. van der: Traction Power Generation with Tethered Wings. In: Ahrens, U., Diehl, M., Schmehl, R. (eds.) Airborne Wind Energy, Green Energy and Technology, Chap. 2, pp. 23–45. Springer, Berlin Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39965-7_2
  26. 26.
    Vergnano, G., Don Bosco, C.: Ultralight Airfoils for Wind Energy Conversion. US Patent 8,113,777, Feb 2012Google Scholar
  27. 27.
    Vlugt, R. van der, Peschel, J., Schmehl, R.: Design and Experimental Characterization of a Pumping Kite Power System. In: Ahrens, U., Diehl, M., Schmehl, R. (eds.) Airborne Wind Energy, Green Energy and Technology, Chap. 23, pp. 403–425. Springer, Berlin Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39965-7_23
  28. 28.
    Zgraggen, A. U., Fagiano, L., Morari, M.: Automatic Retraction and Full-Cycle Operation for a Class of Airborne Wind Energy Generators. IEEE Transactions on Control Systems Technology 24(2), 594–608 (2015).  https://doi.org/10.1109/TCST.2015.2452230

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Marcelo De Lellis
    • 1
  • Ramiro Saraiva
    • 1
  • Alexandre Trofino
    • 1
  1. 1.Department of Automation and SystemsFederal University of Santa CatarinaFlorianopolisBrazil

Personalised recommendations