Advertisement

Optimization-Inspired Control Strategy for a Magnus Effect-Based Airborne Wind Energy System

  • Milan Milutinović
  • Mirko Čorić
  • Joško Deur
Chapter
Part of the Green Energy and Technology book series (GREEN)

Abstract

An optimization study has been conducted and the corresponding control strategy developed for the lighter-than-air airborne wind energy system. The linchpin of the system is an airborne module in the form of a buoyant, rotating cylinder, whose rotation in a wind stream induces the Magnus effect-based aerodynamic lift, thereby facilitating traction power generation. The optimization is aimed at maximizing the average power produced at the ground-based generator during a continuously repeatable operating cycle. This chapter provides a recap of the optimization methodology, results, and their physical interpretation, and builds on this foundation to develop control strategies aimed at approaching the optimization results. Comparative analysis of the two proposed control strategies and the optimization results shows that the simpler and more robust strategy can approach the performance of the more sensitive strategy that closely matches the optimization results.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

It is gratefully acknowledged that this work was supported by the European Commission through the “High Altitude Wind Energy” FP7 project, grant No. 256714. The authors would also like to express their gratitude to the project coordinator Omnidea Lda for the support extended on the project activities, as well as to project partner DTU Wind Energy for useful discussions on HAWE system modeling.

References

  1. 1.
    Ahrens, U., Diehl, M., Schmehl, R. (eds.): Airborne Wind Energy. Green Energy and Technology. Springer, Berlin Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39965-7
  2. 2.
    Åström, K. J., Wittenmark, B.: Computer-Controlled Systems. 3rd ed. Prentice Hall, Upper Saddle River, NJ (1997)Google Scholar
  3. 3.
    Bertsekas, D. P.: Dynamic programming and optimal control. 3rd ed., vol. 1. Athena Scientific, Nashua (2005)Google Scholar
  4. 4.
    Bosman, R., Reid, V., Vlasblom, M., Smeets, P.: Airborne Wind Energy Tethers with High-Modulus Polyethylene Fibers. In: Ahrens, U., Diehl, M., Schmehl, R. (eds.) Airborne Wind Energy, Green Energy and Technology, Chap. 33, pp. 563–585. Springer, Berlin Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39965-7_33
  5. 5.
    Cherubini, A., Papini, A., Vertechy, R., Fontana, M.: Airborne Wind Energy Systems: A review of the technologies. Renewable and Sustainable Energy Reviews 51, 1461–1476 (2015).  https://doi.org/10.1016/j.rser.2015.07.053
  6. 6.
    Fagiano, L., Milanese, M., Piga, D.: Optimization of airborne wind energy generators. International Journal of Robust and Nonlinear Control 22(18), 2055–2083 (2011).  https://doi.org/10.1002/rnc.1808
  7. 7.
    Fagiano, L., Milanese, M.: Airborne Wind Energy: an overview. In: Proceedings of the 2012 American Control Conference, pp. 3132–3143, Montréal, QC, Canada, 27–29 June 2012.  https://doi.org/10.1109/ACC.2012.6314801
  8. 8.
    Hamilton, J. M.: Vibration-based techniques for measuring the elastic properties of ropes and the added mass of submerged objects. Journal of Atmospheric and Oceanic Technology 17(5), 688–697 (2000).  https://doi.org/10.1175/1520-0426(2000)017<0688:VBTFMT>2.0.co;2
  9. 9.
    Houska, B., Diehl, M.: Optimal control for power generating kites. In: Proceedings of the 9th European Control Conference, pp. 3560–3567, Kos, Greece, 2–5 July 2007Google Scholar
  10. 10.
    Houska, B., Diehl, M.: Optimal control of towing kites. In: Proceedings of the 45th IEEE Conference on Decision and Control, pp. 2693–2697, San Diego, CA, USA, 13–15 Dec 2006.  https://doi.org/10.1109/CDC.2006.377210
  11. 11.
    Houska, B., Diehl, M.: Robustness and Stability Optimization of Power Generating Kite Systems in a Periodic Pumping Mode. In: Proceedings of the IEEE Multi-Conference on Systems and Control, pp. 2172–2177, Yokohama, Japan, 8–10 Sept 2010.  https://doi.org/10.1109/CCA.2010.5611288
  12. 12.
    Leonhard, W.: Control of electrical drives. 3rd ed. Springer, Berlin Heidelberg (2001)Google Scholar
  13. 13.
    Loyd, M. L.: Crosswind kite power. Journal of Energy 4(3), 106–111 (1980).  https://doi.org/10.2514/3.48021
  14. 14.
    Milutinović, M., Čorić, M., Deur, J.: Operating cycle optimization for a Magnus effect-based airborne wind energy system. Energy Conversion and Management 90, 154–165 (2015).  https://doi.org/10.1016/j.enconman.2014.10.066
  15. 15.
    Milutinović, M., Kranjčević, N., Deur, J.: Multi-mass dynamic model of a variable-length tether used in a high altitude wind energy system. Energy Conversion and Management 87, 1141–1150 (2014).  https://doi.org/10.1016/j.enconman.2014.04.013
  16. 16.
    Omnidea, Lda: HAWE High AltitudeWind Energy. http://www.omnidea.net/hawe/. Accessed 31 Jan 2016
  17. 17.
    Pavković, D., Hoić, M., Deur, J., Petrić, J.: Energy storage systems sizing study for a highaltitude wind energy application. Energy 76, 91–103 (2014).  https://doi.org/10.1016/j.energy.2014.04.001
  18. 18.
    Penedo, R. J. M., Pardal, T. C. D., Silva, P. M. M. S., Fernandes, N. M., Fernandes, T. R. C.: High Altitude Wind Energy from a Hybrid Lighter-than-Air Platform Using the Magnus Effect. In: Ahrens, U., Diehl, M., Schmehl, R. (eds.) Airborne Wind Energy, Green Energy and Technology, Chap. 29, pp. 491–500. Springer, Berlin Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39965-7_29
  19. 19.
    Perković, L., Silva, P., Ban, M., Kranjčević, N., Duić, N.: Harvesting high altitude wind energy for power production: The concept based on Magnus’ effect. Applied Energy 101, 151–160 (2013).  https://doi.org/10.1016/j.apenergy.2012.06.061
  20. 20.
    Reid, E. G.: Tests of rotating cylinders. Technical Note NACA-TN-209, Langley Memorial Aeronautical Laboratory, Langley Field, VA, USA, 1924. http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19930080991.pdf
  21. 21.
    Rutquist, P. E., Edvall, M. M.: PROPT – Matlab optimal control software, TOMLAB Optimization Inc., 26 Apr 2010. http://tomopt.com/docs/TOMLAB_PROPT.pdf
  22. 22.
    White, F. M.: Fluid mechanics. 4th ed. McGraw-Hill, Boston (1998)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Milan Milutinović
    • 1
  • Mirko Čorić
    • 1
  • Joško Deur
    • 1
  1. 1.Faculty of Mechanical Engineering and Naval ArchitectureUniversity of ZagrebZagrebCroatia

Personalised recommendations