Skip to main content

Evaluation of Coarse Graining DEM Using Representative Particle Model

  • Conference paper
  • First Online:
Proceedings of the 7th International Conference on Discrete Element Methods (DEM 2016)

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 188))

Included in the following conference series:

Abstract

The application of Computational Fluid Mechanics (CFD) coupled to Discrete Element Method (DEM) to simulate industrial and natural scale system requires integrating large number of particles for long times which can make these simulations impractical. One method to reduce the computational cost of DEM simulations is by lumping particles in representative particles of larger diameters to reduce the total number of particles in the simulations. In this work the applicability and limitation of using a representative particle model is evaluated in engineering and natural systems, a fluidized bed system at different fluidization velocities and scaling ratios and a unidirectional open turbulent channel flow in flow regimes ranging from essentially no motion to suspended sediment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sakai, M., Abe, M., Shigeto, Y., Mizutani, S., Takahashi, H., Viré, A., et al.: Verification and validation of a coarse grain model of the DEM in a bubbling fluidized bed. Chem. Eng. J. 244, 33–43 (2014)

    Article  Google Scholar 

  2. Amritkar, A., Deb, S., Tafti, D.: Efficient parallel CFD-DEM simulations using OpenMP. J. Comput. Phys. 256, 501–519 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Gopalakrishnan, P., Tafti, D.: Development of parallel DEM for the open source code MFIX. Powder Technol. 235, 33–41 (2013)

    Article  Google Scholar 

  4. Al-Khayat, O., Bruaset, A.M., Langtangen, H.P.: A lumped particle modeling framework for simulating particle transport in fluids. Commun. Comput. Phys. 8(1), 115–142 (2010)

    Google Scholar 

  5. Al-Khayat, O., Magnus Bruaset, A., Petter Langtangen, H.: Particle collisions in a lumped particle model. Commun. Comput. Phys. 10(4), 823 (2011)

    Article  Google Scholar 

  6. Snider, D.: An incompressible three-dimensional multiphase particle-in-cell model for dense particle flows. J. Comput. Phys. 170(2), 523–549 (2001)

    Article  ADS  MATH  Google Scholar 

  7. Washino, K., Hsu, C.-H., Kawaguchi, T., Tsuji, Y.: Similarity model for DEM simulation of fluidized bed. J. Soc. Powder Technol. Jpn. 44(3), 198–205 (2007)

    Article  Google Scholar 

  8. Liu, Z., Suda, T., Tsuji, T., Tanaka, T.: Use of similarities in CFD-DEM simulation of fluidized bed (2013)

    Google Scholar 

  9. Sakano, M., Yaso, T., Nakanishi, H.: Numerical simulation of two-dimensional fluidized bed using discrete element method with imaginary sphere model. Jpn. J. Multiph. Flow 14(1), 66–73 (2000)

    Article  Google Scholar 

  10. Kuwagi, K., Takeda, H., Horio, M. (eds.): The similar particle assemblage (SPA) model, an approach to large scale DEM simulation. In: Fluidization XI, Engineering Conference International, Brooklyn, NY, USA 11201 (2004)

    Google Scholar 

  11. Sakai, M., Koshizuka, S.: Large-scale discrete element modeling in pneumatic conveying. Chem. Eng. Sci. 64(3), 533–539 (2009)

    Article  Google Scholar 

  12. Benyahia, S., Galvin, J.E.: Estimation of numerical errors related to some basic assumptions in discrete particle methods. Ind. Eng. Chem. Res. 49(21), 10588–10605 (2010)

    Article  Google Scholar 

  13. Mokhtar, M.A., Kuwagi, K., Takami, T., Hirano, H., Horio, M.: Validation of the similar particle assembly (SPA) model for the fluidization of Geldart’s group A and D particles. AIChE J. 58(1), 87–98 (2012)

    Article  Google Scholar 

  14. Hilton, J., Cleary, P. (eds.): Comparison of resolved and coarse grain DEM models for gas flow through particle beds. In: Proceedings of the Ninth International Conference on CFD in the Minerals and Process Industries (2012)

    Google Scholar 

  15. Braun, M., Srinivasa, M., Gohel, S.: Validation of an efficient CFD-DEM model for large scale fluidized beds (2012)

    Google Scholar 

  16. Tafti, D.K. (ed.): GenIDLEST—a scalable parallel computational tool for simulating complex turbulent flows. In: Proceedings of the ASME Fluids Engineering Division, New York, NY, USA 10016-5990 (2001)

    Google Scholar 

  17. Anderson, T.B., Jackson, R.: Fluid mechanical description of fluidized beds. Equations of motion. Ind. Eng. Chem. Fundam. 6(4), 527–539 (1967)

    Article  Google Scholar 

  18. Huilin, L., Yurong, H., Gidaspow, D., Lidan, Y., Yukun, Q.: Size segregation of binary mixture of solids in bubbling fluidized beds. Powder Technol. 134(1–2), 86–97 (2003)

    Article  Google Scholar 

  19. Deb, S., Tafti, D.K.: A novel two-grid formulation for fluid–particle systems using the discrete element method. Powder Technol. 246, 601–616 (2013)

    Article  Google Scholar 

  20. Cundall, P.A., Strack, O.D.L.: A discrete numerical model for granular assemblies. Géotechnique 29(1), 47–65 (1979)

    Article  Google Scholar 

  21. Tsuji, Y., Kawaguchi, T., Tanaka, T.: Discrete particle simulation of two-dimensional fluidized bed. Powder Technol. 77(1), 79–87 (1993)

    Article  Google Scholar 

  22. Schmeeckle, M.W.: Numerical simulation of turbulence and sediment transport of medium sand. J. Geophys. Res. Earth Surf. 119(6), 1240–1262 (2014)

    Article  ADS  Google Scholar 

  23. Wong, M., Parker, G.: The bedload transport relation of Meyer-Peter and Müller overpredicts by a factor of two. J Hydraul. Eng. 132, 1159–1168 (2006)

    Article  Google Scholar 

  24. Engelund, F., Hansen, E.: A monograph on sediment transport in alluvial streams. TEKNISKFORLAG Skelbrekgade 4 Copenhagen V, Denmark (1967)

    Google Scholar 

  25. Sakai, M., Takahashi, H., Pain, C.C., Latham, J.-P., Xiang, J.: Study on a large-scale discrete element model for fine particles in a fluidized bed. Adv. Powder Technol. 23(5), 673–681 (2012)

    Article  Google Scholar 

  26. Kafui, K., Thornton, C., Adams, M.: Discrete particle-continuum fluid modelling of gas–solid fluidised beds. Chem. Eng. Sci. 57(13), 2395–2410 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danesh K. Tafti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Singapore

About this paper

Cite this paper

Elghannay, H.A., Tafti, D.K. (2017). Evaluation of Coarse Graining DEM Using Representative Particle Model. In: Li, X., Feng, Y., Mustoe, G. (eds) Proceedings of the 7th International Conference on Discrete Element Methods. DEM 2016. Springer Proceedings in Physics, vol 188. Springer, Singapore. https://doi.org/10.1007/978-981-10-1926-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-1926-5_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-1925-8

  • Online ISBN: 978-981-10-1926-5

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics