Skip to main content

Discrete Dynamical Model of Multi-stage Twist Superconducting Cable and Prediction of Its Multilayer Stress-Strain Relationship

  • Conference paper
  • First Online:
Book cover Proceedings of the 7th International Conference on Discrete Element Methods (DEM 2016)

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 188))

Included in the following conference series:

  • 5433 Accesses

Abstract

Superconducting cable is the key function part of the ITER (International Thermonuclear Experimental Reactor), and exhibits a typical geometrical multi-scale feature. Based on a modified discrete element method , the multi-layer discrete dynamic models that span in 104–105 orders of magnitude that from a spiral superconducting filament to the multi-stage twist cable are established by stepwise twisting process firstly, and their mechanics response under the external load can be successfully predicted by introducing the flexible authorization nonlinear multiple contact models and considering the friction among multi-continuum reasonably. This bottom-up modeling process also presents a useful approach to predict the mechanical properties of continuous complex twist structures with strong nonlinear and partial discrete features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mitchell, N., Bessette, D., Gallix, R., Jong, C., Knaster, J., Libeyre, P., Sborchia, C., Simon, F.: The ITER magnet system. IEEE Trans. Appl. Supercond. 18(2), 435–440 (2008)

    Article  ADS  Google Scholar 

  2. Devred, A., Backbier, I., Bessette, D., Bevillard, G., Gardner, M., Jewell, M., Mitchell, N., Pong, I., Vostner, A.: Status of ITER conductor development and production. IEEE Trans. Appl. Supercond. 22(3), 4804909 (2012)

    Article  Google Scholar 

  3. Ekin, J.W.: Effect of stress on the critical current of Nb3Sn multi filamentary composite wire. Appl. Phys. Lett. 29, 216–219 (1978)

    Article  ADS  Google Scholar 

  4. Ekin, J.W.: Strain scaling law for flux pinning in practical superconductors. Part 1: Basic relationship and application to Nb3Sn conductors. Cryogenics 20, 611–624 (1980)

    Article  ADS  Google Scholar 

  5. Zhai, Y., Bird, M.D.: Florida electro-mechanical cable model of Nb3Sn CICCs for high-field magnet design. Supercond. Sci. Technol. 21, 115010 (2008)

    Article  ADS  Google Scholar 

  6. Ilyin, Y., Nijhuis, A., Wessel, W.A.J., van den Eijnden, N., ten Kate, H.H.J.: Axial tensile stress-strain characterization of a 36 Nb3Sn strands cable. IEEE Trans. Appl. Supercond. 16, 1249–1252 (2006)

    Article  Google Scholar 

  7. Bajas, H., Durville, D., Devred, A.: Finite element modelling of cable-in-conduit conductors. Supercond. Sci. Technol. 25(5): 054019 (2012)

    Google Scholar 

  8. Zhou, Y.H., Wang, X.Z.: Review on some key issues related to design and fabrication of superconducting magnets in ITER (in Chinese). Sci. Sin-Phys. Mech. Astron. 43(12), 1558–1569 (2013)

    Article  Google Scholar 

  9. Zheng, X.J., Wang, D.M.: Multiscale mechanical behaviors in discrete materials: a review. Acta Mech. Solida Sin. 23(6), 0894–9166 (2010)

    Article  MathSciNet  Google Scholar 

  10. Zhu, J.Y., Luo, W., Zhou, Y.H., Zheng, X.J.: Contact mechanical characteristics of Nb3Sn strands under transverse electromagnetic loads in the CICC cross-section. Supercond. Sci. Technol. 25, 125011 (2012)

    Article  ADS  Google Scholar 

  11. Jia, S.M., Wang, D.M., Zheng, X.J.: Numerical simulation of the mechanical properties of the Nb3Sn CICCs under transverse cyclic loads. IEEE Trans. Appl. Supercond. 24(1), 8400706 (2014)

    Google Scholar 

  12. Jebahi, M., André, D., Terreros, I., Iordanoff, I.: Discrete element method to model 3D continuous materials. Wiley, USA (2015)

    Book  Google Scholar 

  13. Itasca: PFC3D (Particle Flow Code in 2 Dimensions), Version 3.10, User’s Manual, 1st edn. Itasca Consulting Group Inc., Minneapolis (2005)

    Google Scholar 

  14. Costello, G.A., Phillips, J.W.: Effective modulus of twisted wire cables. J. Eng. Mech. Div. ASCE 102(1), 171–181 (1976)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. J. Zheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Singapore

About this paper

Cite this paper

Zheng, X.J., Jia, S.M., Wang, D.M. (2017). Discrete Dynamical Model of Multi-stage Twist Superconducting Cable and Prediction of Its Multilayer Stress-Strain Relationship. In: Li, X., Feng, Y., Mustoe, G. (eds) Proceedings of the 7th International Conference on Discrete Element Methods. DEM 2016. Springer Proceedings in Physics, vol 188. Springer, Singapore. https://doi.org/10.1007/978-981-10-1926-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-1926-5_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-1925-8

  • Online ISBN: 978-981-10-1926-5

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics