Skip to main content

In Vitro Plant Regeneration in Dainty Spur [Rhinacanthus nasutus (L.) Kurz.] by Organogenesis

  • Chapter
  • First Online:
Plant Tissue Culture: Propagation, Conservation and Crop Improvement
  • 2598 Accesses

Abstract

A proficient organogenesis protocol was standardised for Rhinacanthus nasutus, a potential medicinal plant. MS medium supplemented with NAA (2.0 mg/l) + ascorbic acid (30 mg/l) was found to be more effective for callus induction. The highest number of 140.7 shoots/explant with shoot length of 15.5 cm from the callus derived from internode explant and 122.3 shoots/explant with shoot length of 11.0 cm from leaf explant-derived callus were observed on MS medium containing 2.0 mg/l BA + 2.0 mg/l KN + 2.0 mg/l NAA. IAA (1.0 mg/l) has showed effective rooting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Bahrany AM (2002) Effect of phytohormones on in vitro shoot multiplication and rooting of lime Citrus aurantifolia (Christm.) Swing. Sci Hortic 95:285–295

    Article  CAS  Google Scholar 

  • Arnow P, Oleson JJ, Williams JH (1953) The effect of arginine in the nutrition of Chlorella vulgaris. Am J Bot 40:100–104

    Article  CAS  Google Scholar 

  • Ayabe M, Taniguchi K, Sumi SI (1995) Regeneration of whole plants from protoplasts isolated from tissue-cultured shoot primordial of garlic (Allium sativum L.). Plant Cell Rep 15:17–21

    Article  CAS  PubMed  Google Scholar 

  • Barna KS, Wakhlu AK (1993) Somatic embryogenesis and plant regeneration from callus cultures of chick pea (Cicer arietinum L.). Plant Cell Rep 12:521–524

    Article  CAS  PubMed  Google Scholar 

  • Beegum AS, Martin KP, Zang CL, Nishitha IK, Ligimol SA, Madhusoodanan PV (2007) Organogenesis from leaf and internode explants of Ophiorrhiza prostrata, an anticancer drug (camptothecin) producing plant. Plant Biotechnol 10:114–123

    Google Scholar 

  • Bhati R, Shekhawat NS, Arya HC (1992) In vitro regeneration of plantlets from root segments of Aegle marmelos. Indian J Exp Biol 30:844–845

    Google Scholar 

  • Brimson JM, Tencomnao T (2011) Rhinacanthus nasutus protects cultured neuronal cells against hypoxia induced cell death. Molecules 16(8):6322–6338

    Article  CAS  PubMed  Google Scholar 

  • Burbulis N, Blinstrubiene A, Venskutoniene E, Katauskyte L (2005) Organogenesis in callus cultures of Linum usitatissimum L. Acta Universitatis Latviensis 691:129–135

    Google Scholar 

  • Cheruvathur MK, Thomas TD (2014) Shoot organogenesis from root-derived callus of Rhinacanthus nasutus (L.) Kurz. and assessment of clonal fidelity of micropropagated plants using RAPD analysis. Appl Biochem Biotechnol 172(3):1172–1182

    Article  CAS  PubMed  Google Scholar 

  • Cid LPB, Machado ACMG, Carval-heira SBRC, Brasileiro ACM (1999) Plant regeneration from seedling explants of Eucalyptus grandis x E. urophylla. Plant Cell Tiss Org 56:17–23

    Article  Google Scholar 

  • Cramer LH (1998) Acanthaceae. In: Dassanayake MD, Clayton WD (eds) A revised handbook to the flora of Ceylon 12. Oxford & IBH Publishing Co. Pvt. Ltd., New Delhi, pp 1–109

    Google Scholar 

  • Dhar U, Upreti J (1999) In vitro regeneration of a mature leguminous liana (Bauhinia vahlii W&A). Plant Cell Rep 18:664–669

    Article  CAS  Google Scholar 

  • Dickinson JR, Forsyth C, Van Staden J (1986) The role of adenine in the synthesis of cytokinins in tomato plants and in cell-free root extracts. Plant Growth Regul 4:325–334

    Article  CAS  Google Scholar 

  • Echeverrigaray S, Fracaro F, Andrade LB, Biasio S, Atti-Serafini L (2000) In vitro shoot regeneration from leaf explants of Roman Chamomile. Plant Cell Tiss Org 60:1–4

    Article  Google Scholar 

  • Evans DA, Sharp WR, Flick CE (1981) Growth and behaviour of cell cultures: embryogenesis and organogenesis. In: Thorpe TA (ed) Plant tissue culture. Springer, Berlin, pp 345–362

    Google Scholar 

  • Famelaer I, Ennik E, Eikelboom W, Van Tuyl JM, Creemers-Molenaar J (1996) The initiation of callus and regeneration from callus culture of Tulipa gesneriana. Plant Cell Tiss Org 47:51–58

    Article  Google Scholar 

  • Farnsworth NR, Bunypraphatasara N (1992) Thai medicinal plant: recommended for primary health care system. Prachachon, Bangkok

    Google Scholar 

  • George EF (1993) Plant propagation by tissue culture. Part 1. The technology, 2nd edn. Exegetics, Edington

    Google Scholar 

  • George EF, Sherrington PD (1984) Plant propagation by tissue culture. Eastern Press, England

    Google Scholar 

  • Jack EM, Anatasova S, Verkleij AC (2005) Callus induction and plant regeneration in the metallophyte Silene vulgaris (Caryophyllaceae). Plant Cell Tiss Org 80:25–31

    Article  CAS  Google Scholar 

  • Kanchiswamy CN, Maffei M (2008) Callus induction and shoot regeneration of Phaseolus lunatus L. cv. Wonder Bush and cv. Pole Sieva. Plant Cell Tiss Org 92:239–242

    Article  Google Scholar 

  • Kodama O, Ichikawa H, Akatsuka T, Santisopasri V, Kato A, Hayashi Y (1993) Isolation and identification of AN antifungal naphthopyran derivative from Rhinacanthus nasutus. J Nat Prod 56(2):292–294

    Article  CAS  PubMed  Google Scholar 

  • Komalavalli N, Rao MV (2000) In vitro micropropagation of Gymnema sylvestre – a multipurpose medicinal plant. Plant Cell Tiss Org 61:97–105

    Article  Google Scholar 

  • Koroch A, Juliani HR, Kapteyn J, Simson JE (2002) In vitro regeneration of Echinacea purpurea from leaf explants. Plant Cell Tiss Org 69:79–83

    Article  CAS  Google Scholar 

  • Liu ZH, Wang WC, Yan SY (1997) Effect of hormone treatment on callus formation and endogenous indole-acetic acid and polyamine contents of soybean hypocotyl cultivated in vitro. Bot Bull Acad Sin 38:171–176

    CAS  Google Scholar 

  • Makunga NP, Jager AK, van Staden J (2005) An improved system for the in vitro regeneration of Thapsia garganicavia direct organogenesis – influence of auxins and cytokinins. Plant Cell Tiss Org 82:271–280

    Article  CAS  Google Scholar 

  • McClure BA, Guilfoyle T (1989) Rapid redistribution of auxin-regulated RNAs during gravitropism. Science 243:91–93

    Article  CAS  PubMed  Google Scholar 

  • Meena KC, Dennis T (2014) Shoot organogenesis from root-derived callus of Rhinacanthus nasutus (L.) Kurz. and assessment of clonal fidelity of micropropagated plants using RAPD analysis. Appl Biochem Biotechnol 172:1172–1182

    Article  Google Scholar 

  • Murali TP, Duncan EJ (1995) The effects of in vitro hardening using triazoles on growth and acclimatization of banana. Sci Hortic 64:243–251

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio-assays with tobacco tissue cultures. Physiol Plantarum 15:473–497

    Article  CAS  Google Scholar 

  • Murashige T, Tucker DPH (1969) Growth factor requirements of citrus tissue culture. In: Chapman HD (ed) Proceedings of 1st international citrus symposium vol 3. University of California, Riverside Publication, pp 1155–1161

    Google Scholar 

  • Nichol JW, Slade D, Viss P, Stuart DA (1991) Effect of organic acid pretreatment on the regeneration and development (conversion) of whole plants from callus cultures of alfalfa, Medicago sativa L. Plant Sci 79:181–192

    Article  CAS  Google Scholar 

  • Nickerson NL (1978) In vitro shoot formation in lowbush blueberry seedling explants. Hortic Sci 13:698

    Google Scholar 

  • Pyott JI, Converse RH (1981) In vitro propagation of heat-treated red raspberry clones. Hortic Sci 16:308–309

    Google Scholar 

  • Rao PV, Madhavi K, Naidu MD, Gan SH (2013) Rhinacanthus nasutus ameliorates cytosolic and mitochondrial enzyme levels in streptozotocin-induced diabetic rats. Evid.-Based Complement Alternat Med. 2013: Article ID 486047

    Google Scholar 

  • Reddy PS, Rodrigues R, Rajasekharan R (2001) Shoot organogenesis and mass propagation of Coleus forskohlii from leaf derived callus. Plant Cell Tiss Org 66:183–188

    Article  CAS  Google Scholar 

  • Sendl A, Chen JL, Jolad SD, Stoddart C, Rhozon E, Kernan M (1996) Two new naphthoquinones with antiviral activity from Rhinacanthus nasutus. J Nat Prod 59:808–811

    Article  CAS  PubMed  Google Scholar 

  • Sudhakar N, Nagendra Prasad D, Mohan N, Murugesan K (2006) In vitro propagation of Rhinacanthusnasutus: a medicinal herb. Plant Cell Biotechnol Mol Biol 7:159–162

    Google Scholar 

  • Sutter EG (1985) Morphological, physiological and chemical characteristics of epicuticular wax on ornamental plants regenerated In vitro. Ann Bot 55:321–329

    Google Scholar 

  • Sweet S, Guruprasad KN (1997) Effect of ascorbic acid on betacyanin synthesis in Amaranthus caudatus L. Indian J Exp Biol 35:240–243

    CAS  Google Scholar 

  • Tewtrakul S, Tansakul P, Panichayupakaranant P (2009) Anti-allergic principles of Rhinacanthus nasutus leaves. Phytomedicine 16(10):929–934

    Article  CAS  PubMed  Google Scholar 

  • Vasil IK, Thorpe TA (eds) (1994) Plant cell and tissue Culture. In: Studies on clonal propagation, cell behaviour and plant modification in variety of plant spp. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Wilson DPM, Sullivan JA, Marsolais AA, Tsujita MJ, Senaratna T (1996) Improvement of somatic embryogenesis in zonal geranium. Plant Cell Tiss Org 47:27–32

    Article  Google Scholar 

  • Wu TS, Yang CC, Wu P, Liu L (1995) A quinol and steroids from the leaves and stems of Rhinacanthus nasutus. Phytochemistry 40:1247–1249

    Article  CAS  Google Scholar 

  • Wu TS, Hsu HC, Wu PL, Teng CM, Wu YC (1998a) Napthoquinone esters from the root of Rhinacanthus nasutus. Che. Pharm Bull 46:413–418

    Article  CAS  Google Scholar 

  • Wu TS, Tien HJ, Yeh MY, Lee KH (1998b) Rhinacanthin Q, A napthoquinone from Rhinacanthus nasutus and its biological activity. Phytochemistry 27:3787–3788

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Rao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Gouthaman, T., Senthil Kumar, T., Rao, A.S., Rao, M.V. (2016). In Vitro Plant Regeneration in Dainty Spur [Rhinacanthus nasutus (L.) Kurz.] by Organogenesis. In: Anis, M., Ahmad, N. (eds) Plant Tissue Culture: Propagation, Conservation and Crop Improvement. Springer, Singapore. https://doi.org/10.1007/978-981-10-1917-3_7

Download citation

Publish with us

Policies and ethics