Skip to main content

Nonzygotic Embryogenesis for Plant Development

  • Chapter
  • First Online:
Plant Tissue Culture: Propagation, Conservation and Crop Improvement

Abstract

Nonzygotic or somatic embryogenesis is a specialized developmental mode by which somatic cells, under appropriate induction conditions, undergo restructuring pathway to form embryogenic cells. These cells then undergo a sequence of morphological and biochemical alterations that lead to the formation of a nonzygotic embryo and the production of new plants. Nonzygotic embryogenesis is a model system for a large-scale plant production. In vitro nonzygotic embryogenesis has wide practical and commercial applications in basic and applied aspects of agriculture and plant sciences. This chapter discusses the factors affecting nonzygotic embryogenesis and provides valuable information on induction, development, origin, and maturation of nonzygotic embryos, being useful for biotechnological applications. It also highlights the physiological, biochemical, and molecular aspects of nonzygotic embryogenesis. Moreover, this chapter surveys the characteristics of zygotic and nonzygotic embryos, as well as the synthetic seed technology and the practical applications of nonzygotic embryogenesis for crops improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Altman A, Nadel BL, Falash Z, Levin N (1990) Somatic embryogenesis in celery, induction, control and changes in polyamines and proteins. In: Nijkamp, HJJ Vander Plas LHW, Van Aartrijk J (eds) Progress in plant cellular and molecular biology. Kluwer Academic Publishers, Dordrecht, pp 454–459

    Google Scholar 

  • Ammirato PV (1977) Hormonal control of somatic embryo development from cultured cells of caraway. Plant Physiol 59:597–586

    Article  Google Scholar 

  • Anil VS, Rao KS (2000) Calcium mediated signaling during sandalwood somatic embryogenesis. Role for exogenous calcium as second messenger. Plant Physiol 123:1301–1311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Backs-Hüsemann D, Reinert J (1970) Embryobildung durch isolierte Einzelzellen aus Gewebekulturen von Daucus carota. Protoplasma 70:49–60

    Article  Google Scholar 

  • Becwar MR, Noland TL, Wann SR (1987) Somatic embryo development and plant regeneration from embryogenic Norway spruce callus. TAPPI J 70:155–160

    CAS  Google Scholar 

  • Beyl C (2011) PGRs and their use in micropropagation. In: Trigiano RN, Gray DJ (eds) Plant tissue culture, development and biotechnology. CRC Press, LLC, Boca Raton, pp 33–56

    Google Scholar 

  • Bhojwani SS, Dantu PK (2013) Somatic embryogenesis. Plant tissue culture: an introductory text. Springer, New Delhi, pp 75–92

    Book  Google Scholar 

  • Boulay MP, Gupta PK, Krogstrup P, Durzan DJ (1988) Development of somatic embryos from cell suspension cultures of Norway spruce (Picea abies Karst.). Plant Cell Rep 7:134–137

    Article  CAS  PubMed  Google Scholar 

  • Brown C, Brooks FJ, Pearson D, Mathias RJ (1989) Control of embryogenesis and organogenesis in immature wheat embryo callus using increased medium osmolarity and abscisic acid. J Plant Physiol 133:727–733

    Article  CAS  Google Scholar 

  • Buccheim JA, Colburn SM, Ranch JP (1989) Maturation of soybean somatic embryos and the transition to plantlet grown. Plant Physiol 89:768–777

    Article  Google Scholar 

  • Chapman A, Blervacq AS, Vasseur J, Hilbert JL (2000) Arabinogalactan-proteins in Cichorium somatic embryogenesis: effect of beta-glucosyl Yariv reagent and epitope localization during embryo development. Planta 211:305–314

    Article  CAS  PubMed  Google Scholar 

  • Consentino L, Lambert S, Martino C, Jourdan N, Bouchet PE, Witczak J, Castello P, El-Esawi M, Corbineau F, d’Harlingue A, Ahmad M (2015) Blue-light dependent reactive oxygen species formation by Arabidopsis cryptochrome may define a novel evolutionarily conserved signaling mechanism. New Phytol 206:1450–1462

    Article  CAS  PubMed  Google Scholar 

  • De Jong AJ, Cordewener J, Lo Schiavo F, Terzi M, Vandekerckhove J, Van Kammen A, De Vries SC (1992) A carrot somatic embryo mutant is rescued by chitinase. Plant Cell 18:123–134

    Google Scholar 

  • De Jong AJ, Schmidt EDL, De Vries SC (1993) Early events in higher-plant embryogenesis. Plant Mol Biol 22:367–377

    Article  PubMed  Google Scholar 

  • De Vries SC, Booij H, Janssens R, Vogels R, Saris L, Lo Schiavo F, Terzi M, Van Kammen A (1988) Carrot somatic embryogenesis depends on the phytohormone-controlled expression of correctly glycosylated extracellular proteins. Genes Dev 2:462–476

    Article  Google Scholar 

  • Dijak M, Simmonds DH (1988) Microtubule organization during early direct embryogenesis from mesophyll protoplasts of Medicago sativa L. Plant Sci 99:183–191

    Article  Google Scholar 

  • Dijak M, Smith DL, Wilson TJ, Brown DCW (1986) Stimulation of direct embryogenesis from mesophyll protoplasts of Medicago sativa. Plant Cell Rep 5:468–470

    Article  CAS  PubMed  Google Scholar 

  • El-Esawi MA (2015a) Taxonomic relationships and biochemical genetic characterization of Brassica resources: towards a recent platform for germplasm improvement and utilization. Annu Rev Res Biol. doi:10.9734/ARRB/2015/20645

    Google Scholar 

  • El-Esawi MA (2015b) Molecular genetic markers for assessing the genetic variation and relationships in Lactuca germplasm. Annu Rev Res Biol. doi:10.9734/ARRB/2015/20647

    Google Scholar 

  • El-Esawi MA (2016) Genetic diversity and evolution of Brassica genetic resources: from morphology to novel genomic technologies - a review. Plant Genet Resour-C. http://dx.doi.org/10.1017/S1479262116000058

  • El-Esawi MA, Sammour R (2014) Karyological and phylogenetic studies in the genus Lactuca L. (Asteraceae). Cytologia 79:269–275

    Article  Google Scholar 

  • El-Esawi M, Bourke P, Germaine K, Malone R (2012) Assessment of morphological variation in Irish Brassica oleracea species. J Agric Sci 4(10):20–34

    Google Scholar 

  • El-Esawi M, Glascoe A, Engle D, Ritz T, Link J, Ahmad M (2015) Cellular metabolites modulate in vivo signaling of Arabidopsis cryptochrome-1. Plant Signal Behav 10(9) doi:10.1080/15592324.2015.1063758

    Google Scholar 

  • El-Esawi MA, Germaine K, Bourke P, Malone R (2016a) Genetic diversity and population structure of Brassica oleracea germplasm in Ireland using SSR markers. C R Biol 339:133–140. doi:10.1016/j.crvi.2016.02.002

    Google Scholar 

  • El-Esawi MA, Germaine K, Bourke P, Malone R (2016b) AFLP analysis of genetic diversity and phylogenetic relationships of Brassica oleracea in Ireland. C R Biol 133:163–170. doi:10.1016/j.crvi.2016.03.002

    Google Scholar 

  • Emons AMC, Kieft H (1993) Histological comparison of single somatic embryos of maize from suspension culture with somatic embryos attached to callus cells. Plant Cell Rep 10:465–488

    Google Scholar 

  • Emons AMC, Vos JW, Kieft H (1992) A freeze-fracture analysis of the surface of embryogenic and non-embryogenic suspension cells of Daucus carota. Plant Sci 87:85–97

    Article  Google Scholar 

  • Farnum P, Timmis R, Kulp JL (1983) Biotechnology of forest yield. Science 219:694–702

    Article  CAS  PubMed  Google Scholar 

  • Fujimura T, Komamine A (1975) Effects of various growth regulators on the embryogenesis in a carrot cell suspension culture. Plant Sci Lett 5:359–364

    Article  CAS  Google Scholar 

  • Fujimura T, Komamine A, Matsumoto H (1980) Aspects of DNA, RNA and protein synthesis during somatic embryogenesis in a carrot cell suspension culture. Physiol Plant 49:255–260

    Article  CAS  Google Scholar 

  • Gaba VP (2005) PGRs in plant tissue culture and development. In: Trigano RN, Gray DJ (eds) Plant, tissue culture and development. CRC Press, Boca Raton, pp 87–99

    Google Scholar 

  • Gaj MD (2001) Direct somatic embryogenesis as a rapid and efficient system for in vitro regeneration of Arabidopsis thaliana (L) Heynh. plants. Plant Cell Tiss Org Cult 64:39–46

    Article  Google Scholar 

  • Gaspar T, Kevers C, Penel C, Greppin H, Reid DM, Thorpe TA (1996) Plant hormones and PGRs in plant tissue culture. In Vitro Cell Dev Biol Plant 32:272–289

    Article  CAS  Google Scholar 

  • Gray DJ (1986) Quiescence in monocotyledonous and dicotyledonous somatic embryos induced by dehydration. In: Proc. symp. synthetic seed technology for the mass cloning of crop plants: problems and perspectives. HortScience 22:810–814

    Google Scholar 

  • Gray DJ (2011) Propagation from nonmeristematic tissues-nonzygotic embryogenesis. In: Trigiano RN, Gray DJ (eds) Plant tissue culture, development and biotechnology. CRC Press, LLC, Boca Raton, pp 293–306

    Google Scholar 

  • Gray DJ, Purohit A (1991) Somatic embryogenesis and the development of synthetic seed technology. Crit Rev Plant Sci 10:33–61

    Article  Google Scholar 

  • Hakman I, von Arnold S (1988) Somatic embryogenesis and plant regeneration from suspension cultures of Picea glauca (white spruce). Physiol Plant 72:579–587

    Article  CAS  Google Scholar 

  • Halperin W, Wetherell DF (1965) Ammonium requirement for embryogenesis in vitro. Nature (London) 205:519–520

    Article  Google Scholar 

  • Jiminez V (2001) Regulation of in vitro somatic embryogenesis with emphasis on the role of endogenous hormones. Rev Bras Fisiol Veg 13:196–223

    Article  Google Scholar 

  • Jourdan N, Martino C, El-Esawi M, Witczak J, Bouchet PE, d’Harlingue A, Ahmad M (2015) Blue-light dependent ROS formation by Arabidopsis cryptochrome-2 may contribute towards its signaling role. Plant Signal Behav 10(8):e1042647. doi:10.1080/15592324.2015.1042647

    Article  PubMed  PubMed Central  Google Scholar 

  • Kamada H, Harada H (1981) Changes in the endogenous level and effects of abscisic acid during somatic embryogenesis of Daucus carota L. Plant Cell Physiol 22:1423–1429

    CAS  Google Scholar 

  • Karami O, Aghavaisi B, Pour AM (2009) Molecular aspects of somatic-to-embryogenic transition in plants. J Chem Biol 2:177–190

    Article  PubMed  PubMed Central  Google Scholar 

  • Kitto SL, Janick J (1985) Hardening treatments increase survival of synthetically-coated asexual embryos of carrot. J Am Soc Hortic Sci 110:283–286

    CAS  Google Scholar 

  • Komamine A, Matsumoto M, Tsukahara M, Fukimura T (1990) Mechanisms, of somatic embryogenesis in cell cultures—physiology, biochemistry and molecular biology. In: Nijkamp, Van der Plas LHW, Van Aartrijk (eds) Progress in plant cellular and molecular biology. Kluwer Academic Publishers, Dordrecht, pp 307–313

    Chapter  Google Scholar 

  • Kreuger M, Van Holst GJ (1993) Arabinogalactan-proteins are essential in somatic embryogenesis of Daucus carota L. Planta 189:243–248

    Article  CAS  Google Scholar 

  • Kreuger M, Van Holst GJ (1996) Arabinogalactan proteins and plant differentiation. Plant Mol Biol 30:1077–1086

    Article  CAS  PubMed  Google Scholar 

  • Kubalakova M, Strnad M (1992) The effects of aromatic cytokinins (populins) on micropropagation and regeneration of sugar beet in vitro. Biol Plant 34:578

    Google Scholar 

  • KurczyÅ„ska EU, Gaj MD, Ujczak A, Mazur E (2007) Histological analysis of direct somatic embryogenesis in Arabidopsis thaliana (L.) Heynh. Planta 226:619–628

    Article  PubMed  Google Scholar 

  • Letham DS (1963) Zeatin, a factor inducing cell division isolated from Zea mays. Life Sci 2:569–573

    Article  CAS  Google Scholar 

  • Litz RE, Mathews VH, Moon PA, Pliego-Alfaro F, Yurgalevitch C, Dewald SG (1993) Somatic embryos of mango (Mangifera indica L.). In: Redenbaugh K (ed) Synseeds applications of synthetic seeds to crop improvement. Boca Raton, CRC Press, pp 409–425

    Google Scholar 

  • Lotan T, Ohto M, Yee KM, West MA, Lo R, Kwong RW, Yamagishi K, Fischer RL, Goldberg RB, Harada JJ (1998) Arabidopsis LEAFY COTYLEDON1 is sufficient to induce embryo development in vegetative cells. Cell 93:1195–1205

    Article  CAS  PubMed  Google Scholar 

  • Misra S, Green MJ (1990) Developmental gene expression in conifer embryogenesis and germination. I. Seed proteins and protein body composition of mature embryo and megagametophyte of white spruce (Picea glauca (Moench) Voss.). Plant Sci 68:163–173

    Article  CAS  Google Scholar 

  • Montero-Córtes M, Sáenz L, Córdova I, Quiroz A, Verdeil J-L, Oropeza C (2010) GA3 stimulate the formation and germination of somatic embryos and the expression of a KNOTTED-like homeobox gene of Cocos nucifera (L.). Plant Cell Rep 29:1049–1059

    Article  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassay with tobacco tissue culture. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Murthy BNS, Murch SJ, Saxena PK (1998) Thidiazuron: a potent regulator of in vitro plant morphogenesis. In Vitro Cell Dev Biol Plant 34:267–275

    Article  CAS  Google Scholar 

  • Nabors MW, Heyser JW, Dykes TA, De Mott KJ (1983) Long-duration, high frequency plant regeneration from cereal tissue cultures. Planta 157:385–391

    Article  CAS  PubMed  Google Scholar 

  • Nolan KE, Irwanto RR, Rose RJ (2003) Auxin up-regulates MtSERK1 expression in both Medicago truncatula root-forming and embryogenic cultures. Plant Physiol 133:218–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noma M, Huber J, Ernst D, Pharis RP (1982) Quantitation of gibberellins and the metabolism of [3H]gibberellin A1, during somatic embryogenesis in carrot and anise cell cultures. Planta 155:369–376

    Article  CAS  PubMed  Google Scholar 

  • Pinto C, Neufeld R, Ribeiro A, Veiga F (2008) Nanoencapsulation II. Biomedical applications and current status of peptide and protein nanoparticulate delivery systems. Nanomedicine: NBM 2:53–65

    Google Scholar 

  • Preece JE, Heutteman CA, Ashbey WC (1991) Micro and cutting propagation of silver maple. I. Results with adult and juvenile propagates. J Am Soc Hortic Sci 116:142–148

    CAS  Google Scholar 

  • Quiroz-Figueroa FR, Roja-Herrera R, Galaz-Avalos RM, Loyola-Vergas VM (2006) Embryo production through somatic embryogenesis can be used to study cell differentiation in plants. Plant Cell Tissue Organ Cult 86:285–301

    Article  Google Scholar 

  • Raghavan V (1976) Experimental embryogenesis in vascular plants. Academic, New York

    Google Scholar 

  • Raghavan V (2004) Role of 2, 4-dichlorophenoxyacetic acid (2, 4-D) in somatic embryogenesis on cultured zygotic embryos of Arabidopsis: cell expansion, cell cycling, and morphogenesis during continuous exposure of embryos to 2, 4-D. Am J Bot 91:1743–1756

    Article  CAS  PubMed  Google Scholar 

  • Raghavan V (2006) Can carrot and Arabidopsis serve as model systems to study the molecular biology of somatic embryogenesis? Curr Sci 907(1):1336–1343

    Google Scholar 

  • Rajasekaran K, Vine J, Mullins MG (1982) Dormancy in somatic embryos and seeds of Vitis: changes in endogenous abscisic acid during embryogeny and germination. Planta 154:139–144

    Article  CAS  PubMed  Google Scholar 

  • Rosati P, Marino G, Swierczewski C (1980) In vitro propagation of Japanese plum (Prunus salicina Lindl. cv. Calita). J Am Soc Hortic Sci 105:126–129

    CAS  Google Scholar 

  • Samaj J, Baluska F, Volkmann D (1999) Proteins reacting with cadherin and catenin antibodies are present in maize showing tissue-, domain-, and development-specific association with endospermic-reticulum membranes and actin microfilaments in root cells. Protoplasma 206:174–187

    Article  Google Scholar 

  • Sammour R, Badr S, Mustafa A, El-Esawi M (2013) Genetic variation within and among some Lactuca spp. based on karyotype analysis. Appl Cell Biol 2(4):136–143

    Google Scholar 

  • Schmidt EDL, Guzzo F, Toonen MAJ, De Vries SC (1997) A leucine-rich repeat containing receptor-like kinase marks somatic plant cells competent to form embryos. Development 124:2049–2062

    CAS  PubMed  Google Scholar 

  • Senaratna T, McKersie B, Bowley ST (1989) Desiccation tolerance of alfalfa (Medicago sativa L.) somatic embryos: influence of abscisic acid, stress pretreatments and drying rates. Plant Sci 65:253–259

    Article  CAS  Google Scholar 

  • Shevade A, Preece JE (1993) In vitro shoot and floral organogenesis from stamen explants from a Rhododendron PJM group clone. Sci Hortic 56:163–170

    Article  Google Scholar 

  • Singha S, Powell LE (1978) Response of apple buds culture in vitro to abscisic acid. J Am Soc Hortic Sci 103:620–622

    Google Scholar 

  • Skoog F, Miller CO (1957) Chemical regulation of growth and organ formation in plant tissue cultured in vitro. Symp Soc Exp Biol XI:118–131

    Google Scholar 

  • Sterk P, Booij H, Schellekens GA, Van Kammen A, De Varies SC (1991) Cell-specific expression of the carrot EP2 lipid transfer protein gene. Plant Cell 3:907–921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steward FC, Mapes MO, Mears K (1958) Growth and organized development of cultured cells. II. Organization in cultures grown from freely suspended cells. Am J Bot 45:705–708

    Article  Google Scholar 

  • Stone SL, Kwong LW, Yee KM, Pelletier J, Lepiniec L, Fischer RL, Goldberg RB, Harada JJ (2001) LEAFY COTYLEDON2 encodes B3 domain transcription factor that induces embryo development. Proc Natl Acad Sci USA 98:11806–11811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stone SL, Braybrook SA, Paula SL, Kwong LW, Meuser J, Pelletier J, Hsieh TF, Fischer RL, Goldberg RB, Harada JJ (2008) Arabidopsis LEAFY COTYLEDON2 induces maturation traits and auxin activity: implications for somatic embryogenesis. Proc Natl Acad Sci USA 105:3151–3156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strnad M, Hanus J, Vanek T, Kaminek M, Ballantine JA, Fussell B, Hanke DE (1997) Meta-topolin, a highly active aromatic cytokinin from poplar leaves (Populus x canadensis Moench., cv. Robusta). Phytochemistry 45:213–218

    Article  CAS  Google Scholar 

  • Sung ZR, Okimoto R (1981) Embryonic proteins in somatic embryos of carrot. Proc Natl Acad Sci USA 78(6):3683–3687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sung ZR, Okimoto R (1983) Coordinate gene expression during somatic embryogenesis in Carrot. Proc Natl Acad Sci USA 80:2661–2665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Engelen FA, Sterk P, Booij H, Cordewener JHG, Rook W, Van Kammen A, De Vries SC (1991) Heterogeneity and cell-type specific localization of a cell wall glycoprotein from carrot suspension cells. Plant Physiol 96:705–712

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang KL, Yoshida H, Lurin C, Ecker JR (2004) Regulation of ethylene gas biosynthesis by the Arabidopsis ETO1 protein. Nature 428:945–950

    Article  CAS  PubMed  Google Scholar 

  • Wang R, He LS, Xia B, Tong JF, Li N, Peng F (2009) A micropropagation system for cloning of hemp (Cannabis sativa L.) by shoot tip culture. Pak J Bot 41:603–608

    CAS  Google Scholar 

  • Werbrouck S, Strnad M, Van Onckelen H, Debergh P (1996) Meta-topolin, an alternative to benzyladenine in tissue culture? Physiol Plant 98:291

    Article  CAS  Google Scholar 

  • Yadav JS, Rajam MV (1998) Temporal regulation of somatic embryogenesis by adjusting cellular polyamine content in eggplant. Plant Physiol 116:617–625

    Article  CAS  Google Scholar 

  • Yang X, Zhang X (2011) Developmental and molecular aspects of nonzygotic (somatic) embryogenesis. In: Trigiano RN, Gray DJ (eds) Plant tissue culture, development and biotechnology. CRC Press, LLC, Boca Raton, pp 307–325

    Google Scholar 

  • Zhu HG, Tu LL, Jin SX, Xu L, Tan JF, Deng FL, Zhang XL (2008) Analysis of genes differentially expressed during initial cellular dedifferentiation in cotton. Chin Sci Bull 3:3666–3676

    Article  Google Scholar 

  • Zimmerman JL (1993) Somatic embryogenesis: a model for early development in lighter plants. Plant Cell 5:1411–1423

    Article  PubMed  PubMed Central  Google Scholar 

  • Zuo J, Niu QW, Frugis G, Chua NH (2002) The WUSCHEL gene promotes vegetative-to-embryonic transition in Arabidopsis. Plant J 30:349–359

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed A. El-Esawi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

El-Esawi, M.A. (2016). Nonzygotic Embryogenesis for Plant Development. In: Anis, M., Ahmad, N. (eds) Plant Tissue Culture: Propagation, Conservation and Crop Improvement. Springer, Singapore. https://doi.org/10.1007/978-981-10-1917-3_25

Download citation

Publish with us

Policies and ethics