Skip to main content

Micropropagation Technology and Its Applications for Crop Improvement

  • Chapter
  • First Online:
Plant Tissue Culture: Propagation, Conservation and Crop Improvement

Abstract

Micropropagation is one of the current commercial applications of plant tissue culture technologies. It refers to the in vitro clonal propagation of plants from small plant tissues. Micropropagation technology is preferred over the traditional asexual propagation methods. Micropropagation ensures rapid and mass multiplication of genetically identical copies of individual plants, resulting in rejuvenation of old cultivars and quick regeneration of new cultivars resistant to biotic and abiotic stresses. This technology proved to be particularly efficient for orchids and recalcitrant plants. Micropropagation of recalcitrant plants and orchids, such as Paphiopedilum delenatii, has been achieved using novel practical methods including wounding technique in combination with liquid culture and stem node culture. Crop improvement using somaclonal variation found in the in vitro cultured cells has also been accomplished, and many somaclonal variants have been released. The focus of this chapter is to discuss and highlight those advances in micropropagation technology as well as somaclonal variants for crop improvement achieved over the recent past years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed KZ, Abdelkareem AA (2005) Somaclonal variation in bread wheat (Triticum aestivum L.). II. Field performance of somaclones. Cereal Res Commun 33:485–492

    Article  Google Scholar 

  • Amoo SO, Finnie JF, Van Staden J (2011) The role of meta-topolins in alleviating micropropagation problems. Plant Growth Regul 63:197–206

    Article  CAS  Google Scholar 

  • Anderson WC (1975) Propagation of rhododendrons by tissue culture: part I. Development of a culture medium for multiplication of shoots. Propag Int Plant Prop Soc 25:129–135

    Google Scholar 

  • Ascough GD, Erwin JE, van Staden J (2009) Micropropagation of iridaceae – a review. Plant Cell Tissue Organ Cult 97:1–19

    Article  Google Scholar 

  • Bardini M, Labra M, Winfield M, Sala F (2003) Antibiotic-induced DNA methylation changes in calluses of Arabidopsis thaliana. Plant Cell Tissue Organ Cult 72:157–162

    Article  CAS  Google Scholar 

  • Baroja-Fernández E, Aguirreolea J, Martínková H, Hanus J, Strnad M (2002) Aromatic cytokinins in micropropagated potato plants. Plant Physiol Biochem 40:217–224

    Article  Google Scholar 

  • Bednarek PT, Lowska R, Koebner RM, Zimny J (2007) Quantification of the tissue-culture induced variation in barley (Hordeum vulgare L.). BMC Plant Biol 7:10–16

    Article  PubMed  PubMed Central  Google Scholar 

  • Bhojwani SS (1980) In vitro propagation of garlic by shoot proliferation. Sci Hortic 13:47–52

    Article  CAS  Google Scholar 

  • Bhojwani SS, Dantu PK (2013a) Micropropagation. Plant tissue culture: an introductory text. Springer, New Delhi, pp 245–274

    Book  Google Scholar 

  • Bhojwani SS, Dantu PK (2013b) Somaclonal variation. Plant tissue culture: an introductory text. Springer, New Delhi, pp 141–154

    Book  Google Scholar 

  • Bhojwani SS, Razdan MK (1996) Plant tissue culture: theory and practice-a revised edition. Elsevier, Amsterdam

    Google Scholar 

  • Bogaert I, Van Cauter S, Werbrouck SPO, Doleţal K (2006) New aromatic cytokinins can make the difference. Acta Horticult 725:265–270

    Article  CAS  Google Scholar 

  • Bubeck SK (1973) A study of Paphiopedilum meristem culture. Thesis (PhD) Rutgers University. University Microfilm International, Annual Arbor

    Google Scholar 

  • Cardoza V, D’Souza L (2000) Somatic embryogenesis from nucellar tissue of cashew (Anacardium occidentale L.). In Vitro Cell Dev Biol 36(3 part II):2053

    Google Scholar 

  • Castorena Sanchez I, Natali L, Cavallini A (1988) In vitro culture of Aloe barbadensis mill.: morphogenetic ability and nuclear DNA content. Plant Sci 55:53–59

    Article  Google Scholar 

  • Chand S, Roy SC (1980) Studies of callus tissues from different parts of Nigella sativa (Ranunculaceae). Experientia 36:305–306

    Article  Google Scholar 

  • Chandra JKS, Sreenath HL (1982) In vitro culture and morphogenetic studies in some species of Cymbopogon Spreng (aromatic grasses). In: Fujiwara A (ed) Plant tissue culture 11982. Proceedings of the 5th international congress of plant tissue cell culture. Japan Association of Plant Tissue Culture, pp 703–709

    Google Scholar 

  • Chen Y, Piluek C (1995) Effects of thidiazuron and N6-benzylaminopurine on shoot regeneration of Phalaenopsis. Plant Growth Regul 16:99–101

    Article  CAS  Google Scholar 

  • Chen TY, Chen JT, Chang WC (2004) Plant regeneration through direct shoot bud formation from leaf culture of Paphiopedilum orchids. Plant Cell Tissue Organ Cult 76:11–15

    Article  CAS  Google Scholar 

  • Cohen D (1980) Application of micropropagation methods for blueberries and tamarillos. Comb Proc Int Plant Prop Soc 30:144–146

    Google Scholar 

  • Consentino L, Lambert S, Martino C, Jourdan N, Bouchet PE, Witczak J, Castello P, El-Esawi M, Corbineau F, d’Harlingue A, Ahmad M (2015) Blue-light dependent reactive oxygen species formation by Arabidopsis cryptochrome may define a novel evolutionarily conserved signaling mechanism. New Phytol 206:1450–1462

    Article  CAS  PubMed  Google Scholar 

  • Corley RHV, Lee CH, Law LH, Wong CY (1986) Abnormal flower development in oil palm clones. Planter 62:233–240

    Google Scholar 

  • Cristo E, Gonzalez MC, Perez AV (2006) Obtaining somaclones derived from rice (Oryza sativa L.) plants through anther culture of hybrids and varieties. Cultivos Tropic 27:35–39

    Google Scholar 

  • D’Amato F (1990) Somatic nuclear mutations in vivo and in vitro in higher plants. Caryologia 43:191–204

    Article  Google Scholar 

  • Dantu PK, Bhojwani SS (1987) In vitro propagation and corm formation in gladiolus. Gartenbauwissenschaft 52:90–93

    CAS  Google Scholar 

  • Dantu PK, Bhojwani SS (1992) In vitro propagation of gladiolus: optimization of conditions for shoot multiplication. J Plant Biochem Biotechnol 1:115–118

    Article  CAS  Google Scholar 

  • Dantu PK, Bhojwani SS (1995) In vitro corm formation and field evaluation of corm-derived plants of gladiolus. Sci Hortic 61(1):115–129

    Article  Google Scholar 

  • De Bruyn, Ferreira (1992) In vitro corm production of Gladiolus dalenii and G. tristis. Plant Cell Tissue Organ Cult 31:123–128

    Article  CAS  Google Scholar 

  • Donnelly DJ, Coleman WK, Coleman SE (2003) Potato microtuber production and performance: a review. Am J Potato Res 80:103–115

    Article  Google Scholar 

  • Donovan AM, Morgan R, Piagnani V, Ridout MS, James DJ, Garrett CME (1994) Assessment of somaclonal variation in apple. I. Resistance to fire blight pathogen Erwinia amylora. J Hortic Sci 69:105–113

    Article  Google Scholar 

  • Dulieu H, Barbier M (1982) High frequencies of genetic variant plants regenerated from cotyledons of tobacco. In: Earley ED, Demarley Y (eds) Variability in plants regenerated from tissue culture. Praeger Press, New York, pp 211–299

    Google Scholar 

  • Eeuwens CJ, Lord S, Donough CR, Rao V, Vallejo G, Nelson S (2002) Effects of tissue culture conditions during embryoid multiplication on the incidence of ‘mantled’ flowering in clonally propagated oil palm. Plant Cell Tissue Organ Cult 70:311–323

    Article  CAS  Google Scholar 

  • Elanchezhian R, Mandal AB (2007) Growth analysis of somaclones regenerated from a salt tolerant traditional Pokkali rice (Oryza sativa). Indian J Agric Sci 77:184–187

    Google Scholar 

  • El-Esawi MA (2015a) Taxonomic relationships and biochemical genetic characterization of Brassica resources: towards a recent platform for germplasm improvement and utilization. Annu Rev Res Biol. doi:10.9734/ARRB/2015/20645

    Google Scholar 

  • El-Esawi MA (2015b) Molecular genetic markers for assessing the genetic variation and relationships in Lactuca germplasm. Annu Rev Res Biol. doi:10.9734/ARRB/2015/20647

    Google Scholar 

  • El-Esawi MA (2016) Genetic diversity and evolution of Brassica genetic resources: from morphology to novel genomic technologies - a review. Plant Genet Resour-C. http://dx.doi.org/10.1017/S1479262116000058

  • El-Esawi MA, Sammour R (2014) Karyological and phylogenetic studies in the genus Lactuca L. (Asteraceae). Cytologia 79:269–275

    Article  Google Scholar 

  • El-Esawi M, Bourke P, Germaine K, Malone R (2012) Assessment of morphological variation in Irish Brassica oleracea species. J Agric Sci 4(10):20–34

    Google Scholar 

  • El-Esawi M, Glascoe A, Engle D, Ritz T, Link J, Ahmad M (2015) Cellular metabolites modulate in vivo signaling of Arabidopsis cryptochrome-1. Plant Signal Behav 10(9), doi:10.1080/15592324.2015.1063758

    Google Scholar 

  • El-Esawi MA, Germaine K, Bourke P, Malone R (2016a) Genetic diversity and population structure of Brassica oleracea germplasm in Ireland using SSR markers. C R Biol 339:133–140. doi:10.1016/j.crvi.2016.02.002

    Google Scholar 

  • El-Esawi MA, Germaine K, Bourke P, Malone R (2016b) AFLP analysis of genetic diversity and phylogenetic relationships of Brassica oleracea in Ireland. C R Biol 133:163–170. doi:10.1016/j.crvi.2016.03.002

    Google Scholar 

  • Escalona M, Samson G, Borroto C, Desjardins Y (2003) Physiology of effects of temporary immersion bioreactors on micropropagated pineapple plantlets. In Vitro Cell Dev Biol Plant 39(6):651–656

    Article  CAS  Google Scholar 

  • Etienne H, Dechamp E, Barry-Etienne D, Bertrand B (2006) Bioreactors in coffee micropropagation. Braz J Plant Physiol 18:45–54

    Article  CAS  Google Scholar 

  • Evans DA, Sharp WR (1986) Somaclonal variation in agriculture. Biotech 4:528–532

    Article  Google Scholar 

  • Evans DA, Sharp WR, Medina Filho HP (1984) Somaclonal and gametoclonal variation. Am J Bot 6:759–774

    Article  Google Scholar 

  • Forsyth C, Van Staden J (1984) Tuberization of Dioscorea bulbifera stem nodes in culture. J Plant Physiol 115:79–83

    Article  CAS  PubMed  Google Scholar 

  • Geier T (1987) Micropropagation of anthurium scherzerianum: propagation schemes and plant conformity. Acta Horticult 212:439–443

    Article  Google Scholar 

  • Gengenbach BG, Green CE, Donovan CM (1977) Inheritance of selected pathotoxin resistance in maize plants regenerated from cell cultures. Proc Natl Acad Sci USA 74:5113–5117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • George EF, Hall MA, Deklerk GJ (2008) Plant propagation by tissue culture. Springer (2008) Plant growth regulators II: cytokinins, their analogues and antagonists, pp 206–217

    Google Scholar 

  • Gosal SS, Kang MS (2012) Plant tissue culture and genetic transformation for crop improvement. In: Narendra T, Sarvajeet SG, Tiburcio AF, Renu T (eds) Improving crop resistance to abiotic stress. Wiley-VCH, Weinheim, pp 357–387

    Chapter  Google Scholar 

  • Gupta P, Sharma AK, Charturvedi HC (1978) Multiplication of Lilium longiflorum Thunb. by aseptic culture of bulb scales and their segments. Indian J Exp Biol 16:940–942

    Google Scholar 

  • Hammerschlag FA, Ognjanov V (1990) Somaclonal variation in peach: screening for resistance to Xanthomonas campestris pv. pruni and Pseudomonas syringae pv. syringae. Acta Horticult 280:403–408

    Article  Google Scholar 

  • Hoenecke ME, Bula RJ, Tibbitts TW (1992) Importance of ‘blue’ photon levels for lettuce seedlings grown under red-light-emitting diodes. Hortscience 27:427–430

    CAS  PubMed  Google Scholar 

  • Huang LC (1988) A procedure for asexual multiplication of Paphiopedilum in vitro. Am Orchid Soc Bull 57:274–278

    Google Scholar 

  • Huang LC, Lin CJ, Kuo CI, Huang BL, Murashige T (2001) Paphiopedilum cloning in vitro. Sci Hortic 91:111–121

    Article  Google Scholar 

  • Hyndman SE, Hasegawa PM, Bressan RA (1982) Stimulation of root initiation from cultured rose shoots through the use of reduced concentrations of mineral salts. Hortscience 17:82–83

    CAS  Google Scholar 

  • Jain SM, Brar DS, Ahloowalia BS (1989) Somaclonal variation and induced mutations in crop improvement. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Jalaja NC, Sreenivasan TV, Pawar SM, Bhoi PG, Garker RM (2006) Co 94012: a new sugarcane variety through somaclonal variation. Sugar Tech 8:132–136

    Article  Google Scholar 

  • Jourdan N, Martino C, El-Esawi M, Witczak J, Bouchet PE, d’Harlingue A, Ahmad M (2015) Blue-light dependent ROS formation by Arabidopsis Cryptochrome-2 may contribute towards its signaling role. Plant Signal Behav 10(8):e1042647. doi:10.1080/15592324.2015.1042647

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaeppler SM, Kaeppler HF, Rhee Y (2000) Epigenetic aspects of somaclonal variation in plants. Plant Mol Biol 43:179–188

    Article  CAS  PubMed  Google Scholar 

  • Kane M (2011) Propagation by shoot culture. In: Trigiano RN, Gray DJ (eds) Plant tissue culture, development and biotechnology. CRC Press, LLC, Boca Raton, pp 181–191

    Google Scholar 

  • Kaur A, Gosal SS, Gill R, Thind KS (2001) Induction of plant regeneration and somaclonal variation for some agronomic traits in sugarcane (Saccharum officinarum L.). Crop Improv 28:167–172

    Google Scholar 

  • Khan SJ, Khan MA, Ahmad HK, Khan RD, Zafar Y (2004) Somaclonal variation in sugarcane through tissue culture and subsequent screening for salt tolerance. Asian J Plant Sci 3:330–334

    Article  Google Scholar 

  • Kozai T, Xiao Y (2006) A commercialized photoautotrophic micropropagation system. In: Dutta Gupta S, Ibaraki Y (eds) Plant tissue culture engineering. Springer, Dordrecht

    Google Scholar 

  • Krikorian AD, Irizarry H, Cronauer-Mitra SS, Rivera E (1993) Clonal fidelity and variation in plantain (Musa AAB) regenerated from vegetative stem and floral axis tips in vitro. Ann Bot 71:519

    Article  Google Scholar 

  • Ładyzynski M, Burza W, Malepszy S (2002) Relationship between somaclonal variation and type of culture in cucumber. Euphytica 125:349–356

    Article  Google Scholar 

  • Lara RM, Lorido M, Plana D, More O, Gonzalez ME, Alvarez M, Hernandez MM (2003) Isoenzymatic analysis for detecting in vitro variability and/or stability of economically important crops. Cultivos Tropic 24:39–47

    Google Scholar 

  • Larkin PJ, Scowcroft WR (1981) Somaclonal variation: a novel source of variability from cell cultures for plant improvement. Theor Appl Genet 60:197–214

    Article  CAS  PubMed  Google Scholar 

  • Larkin PJ, Li Y, Spindler LH, Tanner GJ, Banks PM (1993) Disease resistance, cell culture and somatic recombination. Acta Horticult 336:341–346

    Article  Google Scholar 

  • Leal MR, Maribona RH, Ruiz A, Korneva S, Canales E, Dinkova TD, Izquierdo F, Goto O, Rizo D (1994) Somaclonal variation as a source of resistance to eyespot disease of sugarcane. Plant Breed 115:37–42

    Article  Google Scholar 

  • Lee M, Phillips RL (1988) The chromosomal basis of somaclonal variation. Annu Rev Plant Physiol Plant Mol Biol 39:413–437

    Article  Google Scholar 

  • Lin YH, Chang C, Chang WC (2000) Plant regeneration from callus culture of a Paphiopedilum hybrid. Plant Cell Tissue Organ Cult 62:21–25

    Article  CAS  Google Scholar 

  • Madubanya LA, Makunga NP, Fennell CW (2006) Dierama luteoalbidum: liquid culture provides an efficient system for the ex situ conservation of an endangered and horticulturally valuable plant. S Afr J Bot 72:584–588

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio-assays with tobacco tissue cultures. Physiol Plant 15(3):473–497

    Article  CAS  Google Scholar 

  • Nayak P, Basu D, Das S, Basu A, Ghosh D, Ramakrishnan NA, Ghosh M, Sen SK (1997) Transgenic elite indica rice plants expressing CryIAc ð-endotoxin of Bacillus thuringiensis are resistant against yellow stem borer (Scirpophaga incertulas). PNAS USA 94:2111–2116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nhut DT (2002) In vitro growth and physiological aspects of some horticultural plantlets cultured under red and blue light-emitting diodes (LEDs). PhD thesis, Kagawa University, Japan

    Google Scholar 

  • Nhut DT, Trang PTT, Vu NH, Thuy DTT, Khiem DK, Binh NV, Van Tran Thanh K (2005) A wounding method and liquid culture in Paphiopedilum delenatii propagation. Prop Ornm Plant 5:156–161

    Google Scholar 

  • Nhut DT, Don NT, Vu NH, Thien NQ, Thuy DTT, Duy N, Teixeira da Silva JA (2006) Advanced technology in micropropagation of some important plants. In: Teixeira da Silva JA (ed) Floriculture ornamental and plant biotechnology, vol II. Global Science Books, London, pp 325–335

    Google Scholar 

  • Olmos SE, Lavia G, Di Renzo M, Morginski L, Echenique V (2002) Genetic analysis of variation in micropropagated plants of Melia azedarach L. In Vitro Cell Dev Biol Plant 38:617–622

    Article  CAS  Google Scholar 

  • Osifo EO, Webb JK, Henshaw GG (1989) Variation amongst callus-derived potato plants, Solanum brevidens. J Plant Physiol 134:1–4

    Article  Google Scholar 

  • Pierik RLM (1991) Commercial aspects of micropropagation. In: Horticulture-new technologies and applications. Kluwer Academic Publishers, Dordrecht, pp 141–153

    Google Scholar 

  • Pijnacker LP, Ferwerda MA, Puite KJ, Schaart JG (1989) Chromosome elimination and mutation in tetraploid somatic hybrids of Solanum tuberosum and Solanum phureja. Plant Cell Rep 8:82–85

    Article  CAS  PubMed  Google Scholar 

  • Plader W, Malepszy S, Burza W, Rusinowski Z (1998) The relationship between the regeneration system and genetic variability in the cucumber (Cucumis sativus L.). Euphytica 103:9–15

    Article  Google Scholar 

  • Plessner O, Ziv M, Negbi M (1990) In vitro corm production in the saffron crocus (Crocus sativus L.). Plant Cell Tissue Organ Cult 20:89–94

    Article  Google Scholar 

  • Read PE (1988) Stock plants influence micropropagation success. Acta Horticult 226:41–52

    Article  Google Scholar 

  • Rodrigues PHV, Tulmann Neto A, Cassieri Neto P, Mendes BMJ (1998) Influence of the number of subcultures on the somaclonal variation of banana plantlets cv. nanicAo in Vale do Ribeira – SP. Rev. bras. Frutic., Cruz das Almas, 20(1):74–79

    Google Scholar 

  • Rosati P, Predieri S (1990) In vitro selection of apple rootstock somaclones with Phytophthora cactorum culture filtrate. Acta Horticult 280:409–413

    Article  Google Scholar 

  • Sabry SRS, Moussa AM, Menshawy AM, El-Borhami HS (2005) Regeneration of leaf rust (Puccinia recondita) resistant high-yielding wheat (Triticum aestivum L.) somaclones from embryogenic callus of Sakha 61 cultivar. Bull Fac Agric Cairo Univ 56(3):469–481

    Google Scholar 

  • Sammour R, Badr S, Mustafa A, El-Esawi M (2013) Genetic variation within and among some Lactuca spp. based on karyotype analysis. Appl Cell Biol 2(4):136–143

    Google Scholar 

  • Santoso D, Thornburg R (2002) Fluoroorotic acid-selected Nicotiana plumbaginifolia cell lines with a stable 390j 16 plant tissue culture and genetic transformation for crop improvement thymine starvation phenotype have lost the thymine-regulated transcriptional program. Plant Physiol 123(4):1517–1524

    Article  Google Scholar 

  • Sengar AS, Thind KS, Kumar B, Mittal P, Gosal SS (2009) In vitro selection at cellular level for red rot resistance in sugarcane (Saccharum sp.). Plant Growth Regul 58:2001–2009

    Article  Google Scholar 

  • Shchukin A, Ben-Bassat D, Israeli Y (1998) Somaclonal variation and horticultural performance of ‘Grand Naine’ bananas multiplied via somatic embryogenesis or shoot-tip culture. In: Plant biotechnology and in vitro biology in the 21st century, Jerusalem, International Association of Plant Tissue Culture, pp 14–19

    Google Scholar 

  • Shepherd K, Souza FVD, Silva KM (1996) Mitotic instability in banana varieties. IV. BAP concentration and effects of number of subcultures. Fruits 51(4):211–216

    Google Scholar 

  • Skirvin RM, Janick J (1976) Tissue-culture induced variation in scented Pelargonium spp. J Am Soc Hortic Sci 101(3):281–290

    Google Scholar 

  • Skirvin RM, McPheeters KD, Norton M (1994) Source and frequency of somaclonal variation. Hortscience 29:1232–1237

    Google Scholar 

  • Sriskandarajah S, Skirvin RM, Abu Qaoud H, Korban SS (1990) Factors involved in elongation and growth of adventitious shoots from tree apple section cultivars in vitro. J Hortsci 65:113–121

    Google Scholar 

  • Steinitz B, Cohen A, Golldberg Z, Kochba M (1991) Precocious gladiolus corm formation in liquid shake culture. Plant Cell Tissue Organ Cult 26:63–70

    Article  CAS  Google Scholar 

  • Stewart J, Button J (1975) Tissue culture studies in Paphiopedilum. Am Orchid Soc Bull 44:591–599

    Google Scholar 

  • Sunderland N (1977) Nuclear cytology. In: Street HE (ed) Plant tissue and cell culture. Blackwell Sci Publ, Oxford, pp 177–205

    Google Scholar 

  • Takahashi S, Matsubara K, Yamagata H, Morimoto T (1992) Micropropagation of virus free bulblets of Lilium longiflorum by tank culture-1. Development of liquid culture method and large scale propagation. Acta Horticult 319:83–88

    Article  Google Scholar 

  • Teoh (2005) Orchids of Asia, Marshall Cavenish, 367 pp

    Google Scholar 

  • Thun V, Goo DH, Kim MH, Byun MS, Kim KW (2008) Effect of in vitro culture environments and culture methods on cormlet formation of gladiolus. Hortic Environ Biotechnol 49:114–120

    Google Scholar 

  • Torrey JG (1965) Physiological bases of organisation and development in the root. In: Ruhland W (ed) Encyclopedia of plant physiology, vol 15. Springer, Heidelberg, pp 1256–1319

    Google Scholar 

  • Tripathy BC, Brown CS (1995) Root-shoot interaction in the greening of wheat seedlings grown under red light. Plant Physiol 107:407–411

    CAS  PubMed  PubMed Central  Google Scholar 

  • Trujillo I, Garcia E (1996) Strategies for obtaining somaclonal variants resistant to yellow Sigatoka (Mycosphaerella musicola). Infomusa 5:12–13

    Google Scholar 

  • Valero-Aracama C, Kane ME, Wilson SB, Philman NL (2008) Comparative growth, morphology, and anatomy of easy- and difficult-to-acclimatize sea oats (Uniola paniculata) genotypes during in vitro culture and ex vitro acclimatization. J Am Soc Hortic Sci 133:830–843

    Google Scholar 

  • Veitia-Rodriguez N, Francisco-Cardoso J, Perez JN, Garcia-Rodriguez L, BermudezCaraballosos I, Garcia-Rodriguez L, Padron-Montesinos Y, OrellanaPerez P, Romero-Quintana C, Hernandez N (2002) Evaluations in field of somaclones of Irish potatoes (Solanum tuberosum Lin.) of the variety Desiree obtained by somaclonal variation and in vitro mutagenesis. Biotecnol Veg 2:21–26

    Google Scholar 

  • Wakasa K (1979) Variation in the plants differentiated from the tissue culture of pineapple. Jpn J Breed 29(1):13–22

    Article  Google Scholar 

  • Yam TW, Arditti J (2009) History of orchid propagation: a mirror of the history of biotechnology. Plant Biotechnol Rep 3:1–56

    Article  Google Scholar 

  • Zheng X, Wei-Xiao M, Ji-Liang Y, Hu-Yan M (2004) In vitro selection of NaCl-tolerant variants of maize and analysis of salt tolerance. J Henan Agric Univ 38:139–143

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed A. El-Esawi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

El-Esawi, M.A. (2016). Micropropagation Technology and Its Applications for Crop Improvement. In: Anis, M., Ahmad, N. (eds) Plant Tissue Culture: Propagation, Conservation and Crop Improvement. Springer, Singapore. https://doi.org/10.1007/978-981-10-1917-3_23

Download citation

Publish with us

Policies and ethics