Skip to main content

Role of Rol Genes: Potential Route to Manipulate Plants for Genetic Improvement

  • Chapter
  • First Online:
Plant Tissue Culture: Propagation, Conservation and Crop Improvement
  • 2665 Accesses

Abstract

The art of genetic engineering not only complements conventional breeding strategies by providing opportunities to incorporate foreign genes/enzymes but also serves as a wide platform to strategically manipulate the endogenous rate-limiting steps for desired or elite traits. The transgenic approaches have made possible to recuperate the genetic architecture in order to improve various biotic and abiotic aspects necessary for plant adaptation and survival. -mediated transformation is the viable approach that has been widely utilised as a convenient method for the improvement of particular trait through incorporation and functional characterisation of genes involved in biochemical, phenotypical and genotypic routes of the metabolic pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ARMT:

Agrobacterium rhizogenes-mediated transformation

GA:

Gibberellic acid

HR :

Hairy root

IAA:

Indole acetic acid

ORF:

Open reading frame

RBF:

Rol binding factor

References

  • Akutsu M, Ishizaki T, Sato H (2004) Transformation of the monocot Alstroemeria by Agrobacterium rhizogenes. Mol Breed 13:69–78

    Google Scholar 

  • Allavena A, Gioveninni A, Berio T, Spena A, Zottini M, Accotto GP et al (2000) Genetic engineering of O steospermum spp: a case story the 19th international symposium on improvement of ornamental plants. Acta Horticult 508:129–133

    Google Scholar 

  • Altamura MM (2004) Agrobacterium rhizogenes rol B and rol D genes: regulation and involvement in plant development. Plant Cell Tissue Organ Cult 77:89–101

    Google Scholar 

  • Altamura MM, Capitani F, Gazza L, Capone I, Costantino P (1994) The plant oncogene rolB stimulates the formation of flower and root meristemoids in tobacco thin cell layers. New Phytol 126:283–293

    Google Scholar 

  • Altamura MM, Archilletti T, Capone I, Constantino P (1991) Histological analysis of the expression of Agrobacterium rhizogenes rolB_GUS gene fusions in transgenic tobacco. New Phytol 118:69–78

    Article  CAS  Google Scholar 

  • Altamura MM, D’Angeli S, Capitani F (1998) The protein of rolB gene enhances shoot formation in tobacco leaf explants and thin cell layers from plants in different physiological stages. J Exp Bot 49:1139–1146

    Google Scholar 

  • Aoki S, Kawaoka A, Sekine M et al (1994) Sequence of the cellular T-DNA in the untransformed genome of Nicotiana glauca that is homologous to ORF s13 and 14 of the Ri plasmid and analysis of its expression in genetic tumours of N. glauca x N. langsdorffii. Mol Gen Genet 243:706–710

    Google Scholar 

  • Ayadi R, Tremouillaux-Guiller J (2003) Root formation from transgenic calli of Ginkgo biloba. Tree Physiol 23:713–718

    Google Scholar 

  • Banerjee S, Zehra M, Kukreja AK et al (1995) Hairy roots in medicinal plants. Curr Res Med Aromat Plants 17(3–4):348–377

    Google Scholar 

  • Barros LMG, Curtis RH, Viana AAB, Campos L, Carneiro M (2003) Fused RolA protein enhances beta-glucuronidase activity 50-fold: implication for r olA mechanism of action. Protein Pept Lett 10:303–311

    Google Scholar 

  • Baumann K, De Paolis A, Costantino P, Gualberti G (1999) The DNA binding site of the Dof protein NtBBF1 is essential for tissue-specific and auxin-regulated expression of the ro l B oncogene in plants. Plant Cell 11:323–334

    Google Scholar 

  • Binns AN, Costantiano P (1998) The agrobacterium oncogenes. In: Spaink H, Kondorosi A, Hooykaas PJJ (eds) The Rhizobiaceae. Kluwer Press, Dordrecht, pp 251–266

    Google Scholar 

  • Boase MR, Winefield CS, Lill TA, Bendall MJ (2004) Transgenic regal pelargoniums that express rol C gene from Agrobacterium rhizogenes exhibit a dwarf floral and vegetative phenotype. In Vitro Cell Dev Biol 40:46–50

    Google Scholar 

  • Bonhomme V, Laurain Mattar D, Fliniaux MA (2000a) Effects of the rolC gene on hairy root: induction development and tropane alkaloid production by Atropa belladonna. J Nat Prod 63:1249–1252

    Google Scholar 

  • Bonhomme V, Laurain-Mattar D, Lacoux J, Fliniaux M, Jacquin-Dubreuil A (2000b) Tropane alkaloid production by hairy roots of Atropa belladonnaobtained after transformation with Agrobacterium rhizogenes 15834 and Agrobacterium tumefaciens containing rol A, B, C genes only. J Biotechnol 81:151–158

    Google Scholar 

  • Bonhomme VL, Laurain-Mattar D, Fliniaux MA (2004) Hairy root induction of Papaver somniferum var. album, a difficult to transform plant, by A. rhizogenes LBA 9402. Planta 218:890–893

    Google Scholar 

  • Bouchez D, Tourneur J (1991) Organization of the agropine synthesis region of the T-DNA of the Ri plasmid from Agrobacterium rhizogenes. Plasmid 25:27–39

    Google Scholar 

  • Britton MT, Escobar MA, Dandekar AM (2008) The oncogenes of Agrobacterium tumefaciens and Agrobacterium rhizogenes. In: Agrobacterium: from biology to biotechnology. Springer, New York, pp 523–563

    Google Scholar 

  • Bubba MD, Ancillotti C, Checchini L, Ciofi L, Fibbi D, Gonnelli C, Mosti S (2013) Chromium accumulation and changes in plant growth, selected phenolics and sugars of wild type and genetically modified Nicotiana langsdorffii. J Hazard Mater 262:394–403

    Article  PubMed  Google Scholar 

  • Bulgakov VP (2008) Functions of rol genes in plant secondary metabolism. Biotechnol Adv 26:318–324

    Article  CAS  PubMed  Google Scholar 

  • Bulgakov VP, Khodakovskaya MV, Labetskaya NV, Cherno- ded GK, Zhuravlev YN (1998) The impact of plant rolC oncogene on ginsenoside production by ginseng hairy root cultures. Phytochemistry 49:1929–1934

    Google Scholar 

  • Bulgakov VP, Tchernoded GK, Mischenko NP, Khodakovskay MV, Glazunov VP, Zvereva EV, Fedoreyev SA, Zhuravlev YN (2002) Effects of salicylic acid, methyl jasmonate, etephone and cantharidin on anthraquinone production by Rubia cordifolia callus cultures transformed with rolB and rolC genes. J Biotechnol 97:213–221

    Google Scholar 

  • Bulgakov VP, Tchernoded GK, Mischenko NP et al (2003a) Effects of Ca(2+) channel blockers and protein kinase/phosphatase inhibitors on growth and anthraquinone production in Rubia cordifolia callus cultures transformed by the rolB and rolC genes. Planta 217:349–355

    Article  CAS  PubMed  Google Scholar 

  • Bulgakov VP, Tchernoded GK, Mischenko NP, Shkryl Yu N, Glazunov VP, Fedoreyev SA, Zhuravlev Yu N (2003b) Increase in anthraquinone content in Rubia cordifolia cells transformed by rol genes does not involve activation of the NADPH oxidase signaling pathway. Biochemistry (Mosc) 68:795–801

    Google Scholar 

  • Bulgakov VP, Kisselev KV, Yakovlev KV (2006) Agrobacterium-mediated transformation of sea urchin embryos. Biotechnol J 1:454–461

    Google Scholar 

  • Bulgakov VP, Aminin DL, Shkryl YN, Gorpenchenko TY, Veremeichik GN, Dmitrenok PS, Zhuravlev YN (2008) Suppression of reactive oxygen species and enhanced stress tolerance in Rubia cordifoli a cells expressing the rolC oncogene. Mol Plant Microbe Interact 21:1561–1570

    Google Scholar 

  • Bulgakov VP, Shkryl YN, Veremeichik GN et al (2013) Recent advances in the understanding of Agrobacterium rhizogenesderived genes and their effects on stress resistance and plant metabolism. Adv Biochem Eng Biotechnol 134:1–22

    Google Scholar 

  • Camilleri C, Jouanin L (1991) The TR-DNA region carrying the auxin synthesis genes of the Agrobacterium rhizogenes agropine-type plasmid pRiA4: nucleotide sequence analysis and introduction into tobacco plants. Mol Plant Microbe Interact 4:155–162

    Google Scholar 

  • Capone I, Spano L, Cardarelli M, Bellincampi D, Petit A, Costantino P (1989) Induction and growth properties of carrot roots with different complements of Agrobacterium rhizogenes T-DNA. Plant Mol Biol 13:43–52

    Google Scholar 

  • Cardarelli M, Mariotti D, Pomponi M, Spano L, Capone J, Contantiino P (1987a) Agrobacterium rhizogenesTDNA genes capable of inducing hairy root phenotype. Mol Gen Genet 209:475–480

    Google Scholar 

  • Cardarelli M, Span L, Mariotti D, Mauro ML, Van Sluys MA, Costantino P (1987b) The role of auxin in hairy root induction. Mol Gen Genet 208:457–463

    Article  CAS  Google Scholar 

  • Carneiro M, Vilaine F (1993) Differential expression of the rolA plant oncogene and its effect on tobacco development. Plant J 3:785–792

    Google Scholar 

  • Casanova E, Trillas MI, Moysset L, Vainstein A (2005) Influence of rol genes in floriculture. Biotechnol Adv 23:3–39

    Article  CAS  PubMed  Google Scholar 

  • Chilton MD, Tepfer DA, Petit A, Casse-Delbart F, Tempe J (1982)Agrobacterium rhizogenes inserts T-DNA into the genome of host plant root cells. Nature 295:432–434

    Google Scholar 

  • Christensen B, Muller R (2009) Kalanchoe Blossfeldiana transformed with rol genes exhibits improved postharvest performance and increased ethylene tolerance. Postharvest Biol Technol 51:399–406

    Article  CAS  Google Scholar 

  • Christey MC (2001) Use of Ri-mediated transformation for production of transgenic plants. In Vitro Cell Dev Biol Plant 37:687–700

    Article  CAS  Google Scholar 

  • Chuck G, Lincoln C, Hake (1996) KNAT1 induces lobed leaves with ectopic meristems when overexpressed in Arabidopsis. Plant Cell 8:1277–1289

    Google Scholar 

  • Daimon H, Mii M (1995) Plant regeneration and thiophene production in hairy root cultures of Rudbeckia hirta L. used as an antagonist plant to nematodes. Jpn J Crop Sci 64:650–655

    Article  CAS  Google Scholar 

  • De Paolis A, Sabatini S, De Pascalis L, Costantino P, Capone I (1996) A rolB regulatory factor belongs to a new class of single zinc finger plant proteins. Plant J 10:215–223

    Google Scholar 

  • Dehio C, Grossmann K, Schell J, Schmülling T (1993) Phenotype and hormonal status of transgenic tobacco plants overexpressing the rolA gene of Agrobacterium rhizogenes T-DNA. Plant Mol Biol 23:1199–1210

    Google Scholar 

  • Dubrovina AS, Manyakhin AY, Zhuravlev YN, Kiselev KV (2010) Resveratrol content and expression of phenylalanine ammonia-lyase and stilbene synthase genes in rolC transgenic cell cultures of Vitis amurensis. Appl Microbiol Biotechnol 88:727–773

    Google Scholar 

  • Estruch JJ, Chriqui D, Grossmann K, Schell J, Spena A (1991) The plant oncogene rol C is responsible for the release of cytokinins from glucoside conjugates. EMBO J 10:2889–2895

    Google Scholar 

  • Faiss M, Strnad M, Redig P, Doležal K, HanuÅ¡ J, Van Onckelen H, Schmülling T (1996) Chemically induced expression of the rolC-encoded B-glucosidase in transgenic tobacco plants and analysis of cytokinin metabolism: rolC does not hydrolyze endogenous cytokinin glucosides in planta. Plant J 10:33–34

    Google Scholar 

  • Filetici P, Moretti F, Camilloni G, Mauro ML (1997) Specific interaction between a Nicotiana tabacumnuclear protein and the Agrobacterium rhizogenes rolB promoter. J Plant Physiol 151: 159–165

    Google Scholar 

  • Filippini F, Rossi V, Marin O, Trovato M, Costantino P, Downey PM, Lo Schiavo F, Terzi M (1996) A plant oncogene as a phosphatase. Nature 379:499–500

    Google Scholar 

  • Fruendt C, Meyer AD, Ichikawa T et al (1998) A tobacco homologue of the Ri plasmid of 13 gene causes cell proliferation in carrot root discs. Mol Gen Genet 259:559–568

    Article  Google Scholar 

  • Fujii N (1997) Pattern of DNA binding of nuclear proteins to the proximal Agrobacterium rhizogenes rolC promoter is altered during somatic embryogenesis of carrot. Gene 201:55–62

    Google Scholar 

  • Giovannini A, Pecchioni N, Allavena A (1996) Genetic transformation of lisianthus (Eustoma grandiflorum Griseb) by Agrobacterium rhizogenes. J Genet Breed 50:33–40

    Google Scholar 

  • Giovannini A, Pecchioni N, Rabaglio M, Allavena A (1997) Characterization of ornamental datura plants transformed by A grobacterium rhizogenes. In Vitro Cell Dev Biol 33:101–106

    Google Scholar 

  • Giri A, Narasu ML (2000) Transgenic hairy roots: recent trends and applications. Biotechnol Adv 18:1–22

    Article  CAS  PubMed  Google Scholar 

  • Godo T, Tsujii O, Ishikawa K, Mii M (1997) Fertile transgenic plants of Nierembergia scoparia Sendtner obtained by a mikimopine type strain of A grobacterium rhizogenes. Sci Horticult 68:101–111

    Google Scholar 

  • Grishchenko OV, Kiselev KV, Tchernoded GK, Fedoreyev SA, Veselova MV, Bulgakov VP, Zhuravlev YN (2013) The influence of the rol Cgene on isoflavonoid production in callus cultures of Maackia amurensis. Plant Cell Tissue Organ Cult 113:429–435

    Google Scholar 

  • Guillon S, Tremouillaux-Guiller J, Pati PK, Rideau M, Gantet P (2006) Harnessing the potential of hairy roots: dawn of a new era. Trend Biotechnol 24:403–409

    Google Scholar 

  • Guivarch A, Spena A, Noin M, Besnard C, Chriqui D (1996) The pleiotropic effects induced by the rolC gene in transgenic plants are caused by expression restricted to protophloem and companion cells. Transgenic Res 5:3–11

    Google Scholar 

  • Handa T (1992a) Genetic transformation of Antirrhinum majus L and inheritance altered phenotype induced by Ri TDNA. Plant Sci 81:199–206

    Google Scholar 

  • Handa T (1992b) Regeneration and characterization of prairie gentian (Eustoma grandiflorum) plants transformed by Agrobacterium rhizogenes. Plant Tissue Cult Lett 9:10–14

    Google Scholar 

  • Handa T, Sugimura T, Kato E, Kamada H, Takayanagi K (1995) Genetic transformation of Eustoma grandiflorum with rol genes. Genetic improvement of horticultural crops by biotechnology. Acta Horticult 392:209–218

    Google Scholar 

  • Handayani NSN, Moriuchi H, Yamakawa M, Yamashita I, Yoshida K, Tanaka N (2005) Characterization of the rolB promoter on mikimopine-type pRi1724 T- DNA. Plant Sci 108:1353–1364

    Google Scholar 

  • Hansen G, Vaubere D, Heron JN et al (1993) Phenotypic effects of overexpression of A grobacterium rhizogenes T-DNA ORF13 in transgenic tobacco plants are mediated by diffusible factors. Plant J 4:581–585

    Google Scholar 

  • Hohn B, Koukolikova-Nicola Z, Bakkeren G, Grimsley N (1989) Agrobacterium mediated gene transfer to monocots and dicots. Genome 31:987–993

    Google Scholar 

  • Hong S, Peebles C, Shanks JV et al (2006) Terpenoid indole alkaloid production by Catharanthus roseus hairy roots induced by Agrobacterium tumefaciens harboring rolABC genes. Biotechnol Bioeng 93:386–390

    Google Scholar 

  • Hoshino Y, Mii M (1998) Bialaphos stimulates shoot regeneration from hairy roots of snapdragon (Antirrhinum majus L) transformed by Agrobacterium rhizogenes. Plant Cell Rep 17:256–261

    Google Scholar 

  • Hosokawa K, Matsui R, Oikawa Y, Yamamura S (1997) Genetic transformation of gentian using wild-type Agrobacterium rhizogenes. Plant Cell Tissue Organ Cult 51:137–140

    Google Scholar 

  • Karuppusamy S (2009) A review on trends in production of secondary metabolites from higher plants by in vitro tissue, organ and cell cultures. J Med Plants Res 3:1222–1239

    CAS  Google Scholar 

  • Kiselev KV, Dubrovina AS, Veselova MV, Bulgakov VP, Fedoreyev SA, Zhuravlev YN (2007) The rolB gene induced overproduction of resveratrol in V itis amurensis transformed cells. J Biotechnol 128:681–692

    Google Scholar 

  • Kiselev KV, Dubrovina AS, Bulgakov VP (2009a) Phenylalanine ammonia-lyase and stilbene synthase gene expression in rolB transgenic cell cultures of Vitis amurensis. Appl Microbiol Biotechnol 82:647–655

    Google Scholar 

  • Kiselev KA, Turlenko AV, Zhuravlev YN (2009b) CDPK gene expression in somatic embryos of Panax ginseng expressing rolC. Plant Cell Tissue Organ Cult 99:141–149

    Google Scholar 

  • Kiselev KV, Turlenko AV, Zhuravlev YN (2009c) PgWUS expression during somatic embryo development in a Panax ginseng 2c3 cell culture expressing the rolC oncogene. Plant Growth Regul 59:237–243

    Google Scholar 

  • Komarovskaa H, KoÅ¡utha J, Giovanninib A, Smelcerovicc, A, Zuehlkec S, yellarovaa E (2010) Effect of the number of rol genes integrations on phenotypic variation in hairy root-derived Hypericum perforatumL. Plants 63c:701–712

    Google Scholar 

  • Kunik T, Tzfira T, Kapulnik Y et al (2001) Genetic transformation of HeLa cells by Agrobacterium. Proc Natl Acad Sci U S A 98:1871–1876

    Google Scholar 

  • Leach F, Aoyagi K (1991) Promoter analysis of the highly expressed rolC and rolDroot-inducing genes of Agrobacterium rhizogenes: enhancer and tissue-specific DNA determinants are dissociated. Plant Sci 79:69–76

    Google Scholar 

  • Lee C, Wang L, Ke S, Qin M, Cheng ZM (1996) Expression of the rol C gene in transgenic plants of Salpiglossis sinuate L. HortScience 31:571

    Google Scholar 

  • Lemcke K, Schmülling T (1998) A putative rolB gene homologue of the Agrobacterium rhizogenes TR-DNA has different morphogenetic activity in tobacco than rol B. Plant Mol Biol 36:803–808

    Google Scholar 

  • Levesque H, Delepelaire P, Rouzé P, Slightom J, Tepfer D (1988) Common evolutionary origin of the central portions of the Ri TL-DNA of Agrobacterium rhizogenesand the Ti T-DNAs of Agrobacterium tumefaciens. Plant Mol Biol 11:731–744

    Google Scholar 

  • Lorence A, Medina-Bolivar F, Nessler CL (2004) Camptothecin and 10 hydroxycamptothecin from Camptotheca acuminata hairy roots. Plant Cell Rep 22:437–444

    Google Scholar 

  • Magrelli A, Langenkemper K, Dehio C, Schell J, Spena A (1994) Splicing of the rolA transcript of Agrobacterium rhizogenesin Arabidopsis. Science 266:1986–1988

    Google Scholar 

  • Martin-Tanguy J, Corbineau F, Burtin D, Ben-Hayyim G, Tepfer D (1993) Genetic transformation with a derivative of rolC from Agrobacterium rhizogenes and treatment with a-aminoisobutyric acid produce similar phenotypes and reduce ethylene production and the accumulation of water-insoluble polyamine- hydroxycinnamic acid conjugates in tobacco flowers. Plant Sci 93:63–76

    Google Scholar 

  • Matsuki R, Uchimiya H (1994) A 43-kDa nuclear tobacco protein interacts with a specific single-stranded DNA sequence from the 5′-upstream region of the Agrobacterium rhizogenes rol C gene. Gene 141:201–205

    Google Scholar 

  • Matsumoto K, Glaucia BG, Teixeira BJ, Monte CD (2009) Agrobacterium-mediated transient expression system in banana immature fruits. Afr J Biotechnol 8:4039–4042

    Google Scholar 

  • Matveeva TV, Sokornova SV, Lutova LA (2015) Influence of Agrobacterium oncogenes on secondary metabolism of plants. Phytochem Rev 14:541–554

    Google Scholar 

  • Maurel C, Leblanc N, Barbier-Brygoo H, Perrot-Rechenmann C, Bouvier-Durand M, Guern J (1994) Alterations of auxin perception in rolB-transformed tobacco protoplasts. Time course ofrol B mRNA expression and increase in auxin sensitivity reveal multiple control by auxin. Plant Physiol 105:1209–1215

    Google Scholar 

  • Maurizio T, Bruno M, Francisco L et al (2001) The plant oncogene rolD encodes a functional ornithine cyclodeaminase. Plant Biol 98(23):13449–13453

    Google Scholar 

  • Mauro ML, Trovato M, Paolis AD, Gallelli A, Costantino P, Altamura MM (1996) The plant oncogene rolD stimulates flowering in transgenic tobacco plants. Dev Biol 180:693–700

    Google Scholar 

  • Mercuri A, Bruna S, De Benedetti L, Burchi G, Schiva T (2001) Modification of plant architecture in Limonium spp induced by rol genes. Plant Cell Tissue Organ Cult 65:247–253

    Google Scholar 

  • Mercuri A, Anfosso L, Burchi G, Bruna S, De Benedetti L, Schiva T (2003a) Rol genes and new genotypes of Limonium gmelinii through Agrobacterium mediated transformation. The 26th international horticultural congress: elegant science in floriculture. Acta Horticult 624:455–462

    Google Scholar 

  • Mercuri A, De Benedetti L, Bruna S, Bregliano R, Bianchini C, Foglia G et al (2003b) Agrobacterium mediated transformation with rol gene of Lilium longiflorum Thunb. The 21st international symposium on classical versus molecular breeding of ornamentals. Acta Horticult 612:129–136

    Google Scholar 

  • Meyer AD, Tempe J, Costantino P (2000) Hairy root: a molecular overview. Functional analysis of Agrobacterium rhizogenes T-DNA genes. In: Stacy G, Keen NT (eds) Plant microbe interactions. APS Press, St. Paul, pp 93–139

    Google Scholar 

  • Moore L, Warren G, Strobel G (1979) Involvement of a plasmid in the hairy root disease of plants caused by Agrobacterium rhizogenes. Plasmid 2:617–626

    Google Scholar 

  • Moritz T, Schmulling T (1998) The gibberellin content of rolA transgenic tobacco plants is specifically altered. J Plant Physiol 153:774–776

    Google Scholar 

  • Moriuchi H, Okamoto C, Nishihama R, Yamashita I, Machida Y, Tanaka N (2004) Nuclear localization and interaction of r olB with plant 14-3-3 proteins correlates with induction of adventitious roots by the oncogene rolB. Plant J 38:260–275

    Google Scholar 

  • Moyano E, Fornale S, Palazon J et al (1999) Effect of Agrobacterium rhizogenesT-AND on alkaloid production in Solanaceae plants. Phytochemistry 52:1287–1292

    Google Scholar 

  • Nandakumar R, Suzanne LC, Rogers MD (2005) Agrobacte rium-mediated transformation of the wetland monocot Typha latifolia L. (Broadleaf cattail). Plant Cell Rep 23:744–750

    Google Scholar 

  • Nilsson O, Olsson O (1997) Getting to the root: the role of the Agrobacterium rhizogenes rol genes in the formation of hairy roots. Physiol Plant 100:463–473

    Google Scholar 

  • Nilsson O, Moritz T, Imbault N, Sandberg G, Olsson O (1993) Hormonal characterization of transgenic tobacco plants expressing the rol C gene of Agrobacterium rhizogenes TL-DNA. Plant Physiol 102:363–371

    Google Scholar 

  • Nilsson O, Little CHA, Sandberg G, Olsson O (1996) Expression of two heterologous promoters, Agrobacterium rhizogenes rolC and cauliflower mosaic virus 35S, in the stem of transgenic hybrid aspen plants during the annual cycle of growth and dormancy. Plant Mol Biol 31:887–895

    Google Scholar 

  • Oono Y, Kanaya K, Uchimiya H (1990) Early flowering in transgenic tobacco plants possessing the rolC gene of Agrobacterium rhizogenes Ri plasmid. Jpn J Genet 68:7–16

    Google Scholar 

  • Otani M, Shimada T, Kamada H, Teruya H, Mii M (1996) Fertile transgenic plants of Ipomoea trichocarpa Ell induced by different strains of A grobacterium rhizogenes. Plant Sci 116:169–175

    Google Scholar 

  • Otten L, Helfer A (2001) Biological activity of the rolB-like 5′ end of the A4-orf8 gene from the Agrobacterium rhizogenes TL-DNA. Mol Plant Microbes Interact 14:405–441

    Google Scholar 

  • Ovadis M, Zuker A, Tzfir T, Ahroni A, Shklarman E, Scovel G (1999) Generation of transgenic carnation plants with novel characteristics by combining microprojectile bombardment with Agrobacterium tumefaciens transformation. In: Altman A, Izhar S, Ziv M (eds) Plant biotechnology and in vitro biology in the 21st century. Kluwer Academic Publishers, Dordrecht, pp 189–192

    Google Scholar 

  • Palazon J, Pinol MT, Cusido RM et al (1997a) Application of transformed root technology to the production of bioactive metabolites. Recent Res Dev Plant Physiol 1:125–143

    Google Scholar 

  • Palazon J, Cusido RM, Roig C, Pinol MT (1997b) Effect of rol genes from Agrobacterium rhizogenes TL-DNA on nicotine production in tobacco root cultures. Plant Physiol Biochem 35:155–162

    Google Scholar 

  • Palazon J, Cusido RM, Roig C, Pinol MT (1998a) Expression of the rolC gene and nicotine production in transgenic roots and their regenerated plants. Plant Cell Rep 17:384–390

    Google Scholar 

  • Palazon J, Cusido RM, Gonzalo J, Bonfill M, Morales S, Pinol MT (1998b) Relation between the amount the rolC gene product and indole alkaloid accumulation in Catharanthus roseus transformed root cultures. J Plant Physiol 153:712–718

    Google Scholar 

  • Pandolfini T, Storlazzi A, Calabria E et al (2000) The spliceosomal intron of the rolA gene of Agrobacterium rhizogenes is a prokaryotic promoter. Mol Microbiol 35:1326–1334

    Google Scholar 

  • Pellegrineschi A, Davolio-Mariani O (1996) Agrobacterium rhizogenesmediated transformation of scented geranium. Plant Cell Tissue Organ Cult 47:79–86

    Google Scholar 

  • Pellegrineschi A, Damon JP, Valtorta N, Paillard N, Tefper D (1994) Improvement of ornamental characters and fragrance production in lemon scented geranium through genetic transformation by A grobacterium rhizogenes. Biotechnology 12:64–68

    Google Scholar 

  • Pinol MT, Palazon J, Cusido R, Serrano M (1996) Effects of Ri T-DNA from Agrobacterium rhizogenes on growth and hyoscyamine production in Datura stramonium root cultures. Bot Acta 109:133–138

    Google Scholar 

  • Porter JR (1991) Host range and implications of plant infection by Agrobacterium rhizogenes. Crit Rev Plant Sci 10:387–421

    Google Scholar 

  • Riker AJ, Banfield WM, Wright WH et al (1930) Studies on infectious hairy root of nursery apple trees. J Agric Res 41:507–540

    Google Scholar 

  • Robins RJ (1998) The application of root cultures to problems of biological chemistry. Nat Prod Rep 15:549–570

    Google Scholar 

  • Schmülling T, Schell J, Spena A (1988) Single genes from Agrobacterium rhizogenes influence plant development. EMBO J 7:2621–2629

    Google Scholar 

  • Schmülling T, Schell J, Spena A (1989) Promoters of therolA, B, and C genes of Agrobacterium rhizogenes are differentially regulated in transgenic plants. Plant Cell 1:665–670

    Google Scholar 

  • Schmulling T, Fladung M, Grossmann K, Schell J (1993) Hormonal content and sensitivity of transgenic tobacco and potato plants expressing single rol genes of Agrobacterium rhizogenesT-DNA. Plant J 3:371–382

    Google Scholar 

  • Senior I, Holford P, Cooley RN, Newbury HJ (1995) Transformation ofAntirrhinum majus using Agrobacterium rhizogenes.J Exp Bot 46:1233–1239

    Google Scholar 

  • Sentoku N, Sato Y, Matsuoka M (2000) Overexpression of rice OSH genes induces ectopic shoots on leaf sheaths of transgenic rice plants. Dev Biol 220:358–364

    Google Scholar 

  • Shen WH, Petit A, Guern J, Tempe J (1988) Hairy roots are more sensitive to auxin than normal roots. Proc Natl Acad Sci U S A 85:3417–3421

    Google Scholar 

  • Shen WH, Davioud E, David C, Barbier-Brygoo H, Tempe J, Guern J (1990) High sensitivity to auxin is a common feature of hairy root. Plant Physiol 94:554–560

    Google Scholar 

  • Shkryl YN, Veremeichik GN, Bulgakov VP, Tchernoded GK, Mischenko NP, Fedoreyev SA et al (2008) Individual and combined effects of the rol A, B and Cgenes on anthraquinone production in Rubia cordifolia transformed calli. Biotechnol Bioeng 100:118–125

    Google Scholar 

  • Sinha N, Williams R, Hake S (1993) Overexpression of the maize homeobox gene, KNOTTED-1, causes a switch from determinate to indeterminate cell fates. Genes Dev 7:787–795

    Google Scholar 

  • Sinkar VP, Pythoud F, White FF, Nester EW, Gordon MP (1988)rolA locus of the Ri plasmid directs developmental abnormalities in transgenic tobacco plants. Genes Dev 2:688–697

    Google Scholar 

  • Slightom JL, Durand-Tardif M, Jouanin L, Tefper D (1986) Nucleotide sequence analysis of TL-DNA of Agrobacterium rhizogenesagropine type plasmid. J Biol Chem 261:108–121

    Google Scholar 

  • Souq F, Coutos-Thevenot P, Yean H, Delbard G, Maziere Y, Barbe JP et al (1996) Genetic transformation of roses, 2 examples: one on morphogenesis, the other on anthocyanin biosynthetic pathway. Second international symposium on roses. Acta Horticult 424:381–388

    Article  Google Scholar 

  • Spano L, Mariotti D, Cardarelli M, Branca C, Costantino P (1998) Morphogenesis and auxin sensitivity of transgenic tobacco with different complements of Ri T-DNA. Plant Physiol 87:479–483

    Article  Google Scholar 

  • Spena A, Schmülling T, Koncz C, Schell JS (1987) Independent and synergistic activity of rol A, B and C loci in stimulating abnormal growth in plants. EMBO J 6:3891–3899

    Google Scholar 

  • Stieger PA, Meyer AD, Kathmann P, Frundt C, Niederhauser I, Barone M, Kuhlemeier C (2004) The orf13 T-DNA gene of Agrobacterium rhizogene s confers meristematic competence to differentiated cells. Plant Physiol 135:1798–1808

    Google Scholar 

  • Sugaya S, Uchimiya H (1992) Deletion analysis of the 5′-upstream region of the Agrobacterium rhizogenes Ri plasmid rolC gene required for tissue-specific expression. Plant Physiol 99:464–467

    Google Scholar 

  • Sugaya S, Hayakawa K, Handa T, Uchimiya H (1989) Cell-specific expression of the rolC gene of the TL-DNA of Ri plasmid in transgenic tobacco plants. Plant Cell Physiol 305:649–653

    Google Scholar 

  • Sun LY, Monneuse MO, Martin-Tanguy J, Tepfer D (1991) Changes in flowering and accumulation of polyamines and hydroxycinnamic acid-polyamine conjugates in tobacco plants transformed by the rol A locus from the Ri TL-DNA of Agrobacterium rhizogene s. Plant Sci 80:145–146

    Google Scholar 

  • Suzuki A, Kato A, Uchimiya H (1992) Single-stranded DNA of 5′-upstream region of the rolC gene interacts with nuclear proteins of carrot cell cultures. Biochem Biophys Res Commun 188:727–733

    Google Scholar 

  • Tanaka N, Fujikawa Y, Aly MAM, Saneoka H, Fujita K, Yamashita I (2001) Proliferation and rol gene expression in hairy root lines of Egyptian clover. Plant Cell Tiss Org Cult 66:175–182

    Article  CAS  Google Scholar 

  • Taneja J, Jaggi M, Wankhede DP et al (2010) Effect of loss of T-DNA genes on MIA biosynthetic pathway gene regulation and alkaloid accumulation in Catharanthus roseus hairy roots. Plant Cell Rep 29(10):1119–1129

    Google Scholar 

  • Tepfer D (1984) Transformation of several species of higher plants by Agrobacterium rhizogenes: sexual transmission of the transformed genotype and phenotype. Cell 37:959–968

    Google Scholar 

  • Thimmaraju R, Venkatachalam L, Bhagyalakshmi N (2008) Morphometric and biochemical characterization of red beet (Beta vulgaris L.) hairy roots obtained after single and double transformations. Plant Cell Rep 27:1039–1052

    Google Scholar 

  • Trovato M, Mauro ML, Costantino P, Altamura MM (1997) TherolD gene from Agrobacterium rhizogenes is developmentally regulated in transgenic tobacco. Protoplasma 197:111–120

    Google Scholar 

  • Trovato M, Maras B, Linhares F, Costantino P (2001) The plant oncogenerolD encodes a functional ornithine cyclodeaminase. Proc Natl Acad Sci U S A 98:13449–13453

    Google Scholar 

  • Van Altvorst AC, Bino RJ, van Djik AJ, Lamers AMJ, Lindhout WH, van der Mark F et al (1992) Effects of the introduction of Agrobacterium rhizogenes rol genes on tomato plant and flower development. Plant Sci 83:77–85

    Google Scholar 

  • Van der Salm TPM, Hanish ten Cate CH, Dons HJM (1996) Prospects for application of rol genes for crop improvement. Plant Mol Biol Rep 14:207–228

    Article  Google Scholar 

  • Van der Salm TPM, van der Toorn CJG, Bouwer R, Hanisch ten Cate, Dons HJM (1997) Production of rol gene transformed plants of rosa hybrida L and characterization of their rooting ability. Mol Breed 3:39–47

    Article  Google Scholar 

  • Venis MA, Napier RM, Barbier-Brygoo H, Maurel C, Perrot-Rechenmann C, Guern J (1992) Antibodies to a peptide from the maize auxin-binding protein have auxin agonist activity. Proc Natl Acad Sci U S A 89:7208–7212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Veremeichik GN, Shkryl YN, Bulgakov VP et al (2012) Molecular cloning and characterization of seven class III peroxidases induced by overexpression of the agrobacterial rol gene in Rubia cordifolia transgenic callus cultures. Plant Cell Rep 31:10009–10019

    Article  Google Scholar 

  • Vereshchagina YV, Bulgakov VP, Grigorchuk VP, Rybin VG, Veremeichik GN, Tchernoded GK, Gorpenchenko TY, Koren OG, Phan NHT, Minh NT, Chau LT, Zhuravlev YN (2014) The rolC gene increases caffeoylquinic acid production in transformed artichoke cell. Appl Microbiol Biotechnol. doi:10.1007/s00253-014-5869-2

    Google Scholar 

  • Verma P, Khan SA, Mathur AK, Shanker K, Lal RK (2014) Regulation of vincamine biosynthesis and associated growth promoting effects through abiotic elicitation, cyclooxygenase inhibition, and precursor feeding of bioreactor grown Vinca minor hairy roots. Appl Biochem Biotechnol 173(3):663–672. doi:10.1007/s12010-014-0883-5

    Google Scholar 

  • Verpoorte R, Contin A, Memelink J (2002) Biotechnology for the production of plants secondary metabolites. Phytochem Rev 1:13–25

    Article  CAS  Google Scholar 

  • Vilaine F, Casse-Delbart F (1987) Independent induction of transformed roots by the TL and TR regions of the Ri plasmid of agropine type Agrobacterium rhizogenes. Mol Gen Genet 206:17–23

    Google Scholar 

  • Vilaine F, Rembur J, Chriqui D, Tepfer M (1998) Modified development in transgenic tobacco plants expressing arolA::GUS translational fusion and subcellular localization of the fusion protein. Mol Plant Microbes Interact 11:855–885

    Google Scholar 

  • White FF, Nester EW (1980a) Hairy root: plasmid encodes virulence traits in Agrobacterium rhizogenes. J Bacteriol 141:1134–1141

    Google Scholar 

  • White FF, Nester EW (1980b) Relationship of plasmids responsible for hairy root and crown gall tumorigenicity. J Bacteriol 144:710–720

    Google Scholar 

  • White FF, Taylor GH, Huffmann GA, Gordon MP, Nester EW (1985) Molecular and genetic analysis of the transferred DNA of the root inducing plasmid of Agrobacterium rhizogenes. J Bacteriol 164:33–44

    Google Scholar 

  • Winefield C, Lewis D, Arathoon S, Deroles S (1999) Alterations of petunia plant form through the introduction of therolC gene from Agrobacterium rhizogenes. Mol Breed 5:543–551

    Google Scholar 

  • Yokoyama R, Hirose T, Fujii N, Aspuria ET, Kato A, Uchimiya H (1994) The rolC promoter of Agrobacterium rhizogenes Ri plasmid is activated by sucrose in transgenic tobacco plants. Mol Gen Genet 244:15–22

    Google Scholar 

  • Zuker A, Tzfira T, Scovel G, Ovadis M, Shklarman E, Itzhaki H et al (2001) RolC transgenic carnation with improved agronomic traits: quantitative and qualitative analyses of greenhouse-grown plants. J Am Soc Horticult Sci 126:13–18

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laiq ur Rahman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Khan, S., Saema, S., Banerjee, S., ur Rahman, L. (2016). Role of Rol Genes: Potential Route to Manipulate Plants for Genetic Improvement. In: Anis, M., Ahmad, N. (eds) Plant Tissue Culture: Propagation, Conservation and Crop Improvement. Springer, Singapore. https://doi.org/10.1007/978-981-10-1917-3_18

Download citation

Publish with us

Policies and ethics