Skip to main content

Rotor Blade Finite Element

  • Chapter
  • First Online:
Finite Element Analysis of Rotating Beams

Part of the book series: Foundations of Engineering Mechanics ((FOUNDATIONS))

  • 1360 Accesses

Abstract

Previous chapters have focused on rotating beams with only the out-of-plane motion. In this chapter, we study rotating blades which have in-plane bending, torsion and axial degrees of freedom. Rotor blades are essential and critical components of helicopters, turbines, compressors and other rotatory machinery (Xiong and Yu, J Sound Vib 302(4–5):821–840, 2007 [1], Thakkar and Ganguli, J Sound Vib 270(4–5):729–753, 2004 [2], Hwang and Kim, J Sound Vib 270(1–2):1–14, 2004 [3], Yoo et al. J Sound Vib 302(4–5):789–805, 2007 [4], Das et al. J Sound Vib 301(1–2):165–188, 2007 [5], Choi et al. J Sound Vib 300(1–2):176–196, 2007 [6]). Blade failure is a severe accident causing the entire machine to shut down.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Xiong JJ, Yu X (2007) Helicopter rotor-fuselage aeroelasticity modeling and solution using the partition-iteration method. J Sound Vib 302(4–5):821–840

    Article  Google Scholar 

  2. Thakkar D, Ganguli R (2004) Dynamic response of rotating beams with piezoceramic actuation. J Sound Vib 270(4–5):729–753

    Article  Google Scholar 

  3. Hwang HY, Kim C (2004) Damage detection in structures using a few frequency response measurements. J Sound Vib 270(1–2):1–14

    Article  MathSciNet  Google Scholar 

  4. Yoo HH, Kim JM, Chung J (2007) Equilibrium and modal analysis of rotating multibeam structures employing multiple reference frames. J Sound Vib 302(4–5):789–805

    Article  Google Scholar 

  5. Das SK, Ray PC, Pohit G (2007) Free vibration analysis of a rotating beam with nonlinear spring and mass system. J Sound Vib 301(1–2):165–188

    Article  MATH  Google Scholar 

  6. Choi SC, Park JS, Kim JH (2007) Vibration control of pretwisted rotating composite thin-walled beams with piezoelectric fiber composites. J Sound Vib 300(1–2):176–196

    Article  Google Scholar 

  7. Rao AD (1993) A feasibility and assessment study for FT4000 humid air turbine (HAT), EPRI RP-325105

    Google Scholar 

  8. Thirupathi SR, Seshu P, Naganathan NG (1997) A finite element static analysis of smart turbine blades. Smart Mater Struct 6(5):607–615

    Article  Google Scholar 

  9. Bernhard APF, Chopra I (2001) Analysis of a bending-torsion coupled actuator for a smart rotor with active blade tips. Smart Mater Struct 10(1):35–52

    Article  Google Scholar 

  10. Leissa AW (1980) Vibrations of turbine engine blades by shell analysis. Shock Vib Dig 12(1):1–10

    Google Scholar 

  11. Ramamurti V, Sreenivasamurthy S (1980) Dynamic stress analysis of rotating twisted and tapered blades. J Strain Anal 15(3):117–126

    Article  Google Scholar 

  12. Bogomolov SI, Lutsenko SS, Nazarenko SA (1982) Application of superparametric shell finite element to the calculation of turbine blade vibrations. Problemy Prochnosti 156(6):71–74

    Google Scholar 

  13. Bucco D, Mazumdar J (1983) Estimation of the fundamental frequencies of shallow shells by a finite element - isodeflection contour method. Comput Struct 17(3):441–447

    Article  MATH  Google Scholar 

  14. Repetskii OV (1988) Numerical calculation of the natural blade vibrations of turbomachinery. Plenum Publishing Corporation, New York, pp 453–459

    Google Scholar 

  15. Jiang JJ, Hsiao CL, Shabana AA (1991) Calculation of non-linear vibration of rotating beams by using tetrahedral and solid finite elements. J Sound Vib 148(2):193–213

    Article  Google Scholar 

  16. Qin F, Chen L, Li Y, Zhang X (2006) Fundamental frequencies of turbine blades with geometry mismatch in fir-tree attachments. J Turbomach 128:512–516

    Article  Google Scholar 

  17. Wang G, Wereley NM (2004) Free vibration analysis of rotating blades with uniform tapers. AIAA J 42(12):2429–2437

    Article  Google Scholar 

  18. Durocher LL, Kane J (1980) Preliminary design tools for pretwisted tapered beams or turbine blades. J Mech Des, Trans ASME 102(4):742–748

    Article  Google Scholar 

  19. Ormiston RA, Hodges DH (1972) Linear flap-lag dynamics of hingeless helicopter rotor blades in hover. J Am Helicopter Soc 17:2–14

    Article  Google Scholar 

  20. Qin QH, Mao CX (1996) Coupled torsional-flexural vibration of shaft systems in mechanical engineering-I, finite element model. Comput Struct 58(4):835–843

    Article  Google Scholar 

  21. Ruhl RL, Booker JF (1972) A finite element model for distributed parameter turborotor systems. J Eng Ind, ASME 94:128–132

    Article  Google Scholar 

  22. Thorkildson T (1974) Solution of a distributed mass and unbalanced rotor system using a consistent mass matrix approach, MSE Engineering Report, Arizona State University

    Google Scholar 

  23. Belo EM, Marques FD (1994) Analysis and vibration control of a helicopter rotor blade, Conference Publication No. 389, IEE, pp 1290–1295

    Google Scholar 

  24. Putter S, Manor H (1978) Natural frequencies of radial rotating beams. J Sound Vib 56:175–185

    Article  MATH  Google Scholar 

  25. Ramamurti V, Kielb R (1984) Natural frequencies of twisted rotating plates. J Sound Vib 97:429–449

    Article  Google Scholar 

  26. Yoo HH, Park JH, Park J (2001) Vibration analysis of rotating pre-twisted blades. Comput Struct 79:1811–1819

    Article  Google Scholar 

  27. Banerjee JR (1999) Free vibration of centrifugally stiffened uniform and tapered beams using the dynamic stiffness method. J Sound Vib 233(5):857–875

    Article  MATH  Google Scholar 

  28. Banerjee JR, Jackson DR (2006) Free vibration of rotating tapered beams using the dynamic stiffness method. J Sound Vib 298(4–5):1034–1054

    Article  Google Scholar 

  29. Hashemi SM, Richard MJ (2001) Natural frequencies of rotating uniform beams with Coriolis effects. J Vib Acoust 123:444–455

    Article  Google Scholar 

  30. Kuang JH, Hsu MH (2002) Eigensolutions of grouped turbo blades solved by the generalized differential quadrature method. J Eng Gas Turbines Power 124:1011–1017

    Article  Google Scholar 

  31. Hodges DH, Dowell EH (1974) Nonlinear equations of motion for the elastic bending and torsion of twisted nonuniform rotor blades, NASA TN D-7818, Washington D.C

    Google Scholar 

  32. Bir G, Chopra I, Ganguli R et al (1994) University of Maryland advanced rotorcraft code (UMARC), Theory manual

    Google Scholar 

  33. Gopalakrishnan S (2000) A deep rod finite element for structural dynamics and wave propogation problems. Int J Numer Methods Eng 48(5):731–744

    Article  MATH  Google Scholar 

  34. Chakraborty A, Gopalakrishnan S, Reddy JN (2003) A new beam finite element for the analysis of functionally graded materials. Int J Mech Sci 45(3):519–539

    Article  MATH  Google Scholar 

  35. Mukherjee S, Reddy JN, Krishnamoorthy CS (2001) Convergence properties and derivative extraction of the superconvergent Timoshenko beam finite element. Comput Methods Appl Eng 190(26–27):3475–3500

    Article  MathSciNet  MATH  Google Scholar 

  36. Ghosh DP, Gopalakrishnan S (2007) A superconvergent finite element for composite beams with embedded magnetostrictive patches. Compos Struct 79(3):315–330

    Article  Google Scholar 

  37. Bhat SR, Ganguli R (2004) Validation of comprehensive helicopter aeroelastic analysis with experimental data. Def Sci J 54(4):419–427

    Article  Google Scholar 

  38. Ganguli R, Chopra I, Weller WH (1998) Comparison of calculated vibratory rotor hub loads with experimental data. J Am Helicopter Soc 43(4):312–318

    Article  Google Scholar 

  39. Heck A (2003) Introduction to Maple, 3rd edn. Springer, New York

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranjan Ganguli .

Appendix 1

Appendix 1

Mass matrix is derived as,

$$\begin{aligned} \mathbf{[M]} = \left[ \begin{matrix} M_{uu} &{} 0 &{} 0 &{} 0\\ 0 &{} M_{vv} &{} 0 &{} M_{v\phi }\\ 0 &{} 0 &{} M_{ww} &{} M_{w\phi }\\ 0 &{} M_{\phi v} &{} M_{\phi w} &{} M_{\phi \phi }\\ \end{matrix}\right] \end{aligned}$$
(7.83)

where,

$$\begin{aligned} M_{uu}= & {} \int _{0}^{l}m\mathbf{H}_u^T\mathbf{H}_udx\end{aligned}$$
(7.84)
$$\begin{aligned} M_{vv}= & {} \int _{0}^{l}m\mathbf{H}_v^T\mathbf{H}_vdx\end{aligned}$$
(7.85)
$$\begin{aligned} M_{v\phi }= & {} -\int _{0}^{l}me_g\sin \theta _0\mathbf{H}_v^T\mathbf{H}_{\phi }dx\end{aligned}$$
(7.86)
$$\begin{aligned} M_{ww}= & {} \int _{0}^{l}m\mathbf{H}_w^T\mathbf{H}_wdx\end{aligned}$$
(7.87)
$$\begin{aligned} M_{w\phi }= & {} \int _{0}^{l}me_g\cos \theta _0\mathbf{H}_w^T\mathbf{H}_{\phi }dx \end{aligned}$$
(7.88)
$$\begin{aligned} M_{\phi v}= & {} -\int _{0}^{l}me_g\sin \theta _0\mathbf{H}_{\phi }^T\mathbf{H}_vdx\end{aligned}$$
(7.89)
$$\begin{aligned} M_{\phi w}= & {} \int _{0}^{l}me_g\cos \theta _0\mathbf{H}_{\phi }^T\mathbf{H}_wdx\end{aligned}$$
(7.90)
$$\begin{aligned} M_{\phi \phi }= & {} \int _{0}^{l}mK_m^2\mathbf{H}_{\phi }^T\mathbf{H}_{\phi }dx \end{aligned}$$
(7.91)

Stiffness matrix is derived as,

$$\begin{aligned} \mathbf{[K]} = \left[ \begin{matrix} K_{uu} &{} K_{uv} &{} K_{uw} &{} K_{u\phi }\\ K_{vu} &{} K_{vv} &{} K_{vw} &{} K_{v\phi }\\ K_{wu} &{} K_{wv} &{} K_{ww} &{} K_{w\phi }\\ K_{\phi u} &{} K_{\phi v} &{} K_{\phi w} &{} K_{\phi \phi }\nonumber \end{matrix}\right] \end{aligned}$$

where,

$$\begin{aligned} K_{uu}= & {} \int _{0}^{l}EA\mathbf{B}_u^T\mathbf{B}_udx -\int _{0}^{l}m\mathbf{H}_u^T\mathbf{H}_udx\end{aligned}$$
(7.92)
$$\begin{aligned} K_{uv}= & {} -\int _{0}^{l}EAe_A\cos \theta _0\mathbf{B}_u^T\mathbf{N}_vdx\end{aligned}$$
(7.93)
$$\begin{aligned} K_{uw}= & {} -\int _{0}^{l}EAe_A\sin \theta _0\mathbf{B}_u^T\mathbf{N}_wdx\end{aligned}$$
(7.94)
$$\begin{aligned} K_{u\phi }= & {} \int _{0}^{l}EAK_A^2\theta _0'{} \mathbf{B}_u^T\mathbf{B}_{\phi }dx\end{aligned}$$
(7.95)
$$\begin{aligned} K_{vu}= & {} -\int _{0}^{l}EAe_A\cos \theta _0\mathbf{N}_v^T\mathbf{B}_udx \end{aligned}$$
(7.96)
$$\begin{aligned} K_{vv}&=\int _{0}^{l}\left( EI_z\cos ^2\theta _0+EI_y\sin ^2\theta _0\right) \mathbf{N}_v^T\mathbf{N}_vdx -\int _{0}^{l}m\mathbf{H}_v^T\mathbf{H}_vdx +\int _{0}^{l}\left[ \int _{x}^{l}mxd\xi \right] \mathbf{B}_v^T\mathbf{B}_vdx\qquad \qquad \end{aligned}$$
(7.97)
$$\begin{aligned} K_{vw}&=\int _{0}^{l}\left( EI_z-EI_y\right) \sin \theta _0\cos \theta _0\mathbf{N}_v^T\mathbf{N}_wdx \end{aligned}$$
(7.98)
$$\begin{aligned} K_{v\phi }&=-\int _{0}^{l}EB_2\theta _0'\cos \theta _0\mathbf{N}_v^T\mathbf{B}_{\phi }dx +\int _{0}^{l}me_g\sin \theta _0\mathbf{H}_v^T\mathbf{H}_{\phi }dx -\int _{0}^{l}mxe_g\sin \theta _0\mathbf{B}_v^T\mathbf{\mathbf{H}}_{\phi }dx\qquad \qquad \end{aligned}$$
(7.99)
$$\begin{aligned} K_{wu}=-\int _{0}^{l}EAe_A\sin \theta _0\mathbf{N}_w^T\mathbf{B}_udx\qquad \qquad \end{aligned}$$
(7.100)
$$\begin{aligned} K_{wv}=\int _{0}^{l}\left( EI_z-EI_y\right) \sin \theta _0\cos \theta _0\mathbf{N}_w^T\mathbf{N}_vdx\qquad \qquad \end{aligned}$$
(7.101)
$$\begin{aligned} K_{ww}=\int _{0}^{l}\left( EI_y\cos ^2\theta _0+EI_z\sin \theta _0\right) \mathbf{N}_w^T\mathbf{N}_wdx +\int _{0}^{l}\left[ \int _{x}^{l}mxd\xi \right] \mathbf{B}_w^T\mathbf{B}_wdx\qquad \qquad \end{aligned}$$
(7.102)
$$\begin{aligned} K_{w\phi }=-\int _{0}^{l}EB_2\theta _0'\sin \theta _0\mathbf{N}_w^T\mathbf{B}_{\phi }dx +\int _{0}^{l}mxe_g\cos \theta _0\mathbf{B}_w^T\mathbf{H}_{\phi }dx\qquad \qquad \end{aligned}$$
(7.103)
$$\begin{aligned} K_{\phi u}=\int _{0}^{l}EAK_A^2\theta _0'{} \mathbf{B}_{\phi }^T\mathbf{B}_udx\qquad \qquad \end{aligned}$$
(7.104)
$$\begin{aligned} K_{v\phi }=-\int _{0}^{l}EB_2\theta _0'\cos \theta _0\mathbf{N}_v^T\mathbf{B}_{\phi }dx +\int _{0}^{l}me_g\sin \theta _0\mathbf{H}_v^T\mathbf{H}_{\phi }dx\qquad \qquad \nonumber \\ -\int _{0}^{l}mxe_g\sin \theta _0\mathbf{B}_v^T\mathbf{\mathbf{H}}_{\phi }dx\qquad \qquad \end{aligned}$$
(7.105)
$$\begin{aligned} K_{\phi w}=-\int _{0}^{l}EB_2\theta _0'\sin \theta _0\mathbf{B}_{\phi }^T\mathbf{N}_wdx +\int _{0}^{l}mxe_g\cos \theta _0\mathbf{H}_{\phi }^T\mathbf{B}_wdx\qquad \qquad \end{aligned}$$
(7.106)
$$\begin{aligned} K_{\phi \phi }=\int _{0}^{l}\left( GJ+EB_1{\theta _0'}^2\right) \mathbf{B}_{\phi }^T\mathbf{B}_{\phi }dx -\int _{0}^{l}m\left( K_{m_1}^2-K_{m_2}^2\right) cos2\theta _0\mathbf{H}_{\phi }^T\mathbf{H}_{\phi }dx\qquad \qquad \end{aligned}$$
(7.107)

Damping matrix is derived as,

$$\begin{aligned} \mathbf{[C]} = \left[ \begin{matrix} 0 &{} C_{uv} &{} 0 &{} 0\\ C_{vu} &{} C_{vv} &{} C_{vw} &{} 0\\ 0 &{} C_{wv} &{} 0 &{} 0\\ 0 &{} 0 &{} 0 &{} 0\\ \end{matrix}\right] \end{aligned}$$
(7.108)

where,

$$\begin{aligned} C_{uv}= & {} -\int _{0}^{l}2m\mathbf{H}_u^T\mathbf{H}_vdx\end{aligned}$$
(7.109)
$$\begin{aligned} C_{vu}= & {} \int _{0}^{l}2m\mathbf{H}_v^T\mathbf{H}_udx\end{aligned}$$
(7.110)
$$\begin{aligned} C_{vv}= & {} -\int _{0}^{l}2me_g\cos \theta _0\mathbf{H}_v^T\mathbf{B}_vdx -\int _{0}^{l}2me_g\cos \theta _0\mathbf{B}_v^T\mathbf{H}_vdx\end{aligned}$$
(7.111)
$$\begin{aligned} C_{vw}= & {} -\int _{0}^{l}2m\beta _p\mathbf{H}_v^T\mathbf{H}_wdx -\int _{0}^{l}2me_g\sin \theta _0\mathbf{H}_v^T\mathbf{B}_wdx\end{aligned}$$
(7.112)
$$\begin{aligned} C_{wv}= & {} -\int _{0}^{l}2m\beta _p\mathbf{H}_w^T\mathbf{H}_vdx -\int _{0}^{l}2me_g\sin \theta _0\mathbf{B}_w^T\mathbf{H}_vdx \end{aligned}$$
(7.113)

Load vector is derived as,

$$\begin{aligned} \mathbf{\{R\}} = \left\{ \begin{matrix} -\int _{0}^{l}mx\mathbf{H}_u^Tdx\\ -\int _{0}^{l}\left( me_g\cos \theta _0\mathbf{H}_v^T -me_g\sin \theta _0\ddot{\theta _0}{} \mathbf{H}_v^T+mxe_g\cos \theta _0\mathbf{B}_v^T\right) dx\\ \int _{0}^{l}\left( mx\beta _p\mathbf{H}_w^T +me_g\cos \theta _0\ddot{\theta _0}{} \mathbf{H}_w^T+mxe_g\sin \theta _0\mathbf{B}_w^T\right) dx\\ \int _{0}^{l}\left( \left( K_{m_2}^2-K_{m_1}^2\right) \frac{sin2\theta _0}{2}m\mathbf{H}_{\phi }^T+mx\beta _pe_g\cos \theta _0\mathbf{H}_{\phi }^T\right) dx\\ \end{matrix}\right\} \nonumber \\ \end{aligned}$$
(7.114)

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Ganguli, R. (2017). Rotor Blade Finite Element. In: Finite Element Analysis of Rotating Beams. Foundations of Engineering Mechanics. Springer, Singapore. https://doi.org/10.1007/978-981-10-1902-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-1902-9_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-1901-2

  • Online ISBN: 978-981-10-1902-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics