Pharmacological Importance of Crocus sativus Apocarotenoids

  • Shoib Ahmad Baba
  • Nasheeman Ashraf
Part of the SpringerBriefs in Plant Science book series (BRIEFSPLANT)


Crocus sativus L. is an important medicinal plant belonging to family Iridaceae. It has been used in traditional medicine since time immemorial. The traditional medicinal uses have also validated scientifically. Different bioactivities like anticancer, neuroprotective, anti-inflammatory, and cardioprotective have been ascribed to C. sativus. These properties are speculated to be due to the presence of several carotenoids and their apocarotenoid products. This chapter provides an in-depth knowledge about the traditional medicinal uses of saffron and their subsequent pharmacological validation.


Apocarotenoids Anticancer Neuroprotective Hepatoprotective 


  1. Abdullaev FI, Espinosa-Aguirre JJ (2004) Biomedical properties of saffron and its potential use in cancer therapy and chemoprevention trials. Cancer Detect Prev 28:426–432PubMedCrossRefGoogle Scholar
  2. Abdullaev FI, Frenkel GD (1999) Saffron in biological and medical research. Saffron: Crocus sativus L. Harwood Academic Publishers, Amsterdam, pp 103–114Google Scholar
  3. Abdullaev FI, Riveron-Negrete L, Caballero-Ortega H, Hernández JM, Perez-Lopez I, Pereda-Miranda R, Espinosa-Aguirre JJ (2003) Use of in vitro assays to assess the potential antigenotoxic and cytotoxic effects of saffron (Crocus sativus L.). Toxicol in Vitro 17(5):731–736PubMedCrossRefGoogle Scholar
  4. Abe K, Sugiura M, Yamaguchi S, Shoyama Y, Saito H (1999) Saffron extract prevents acetaldehyde-induced inhibition of long-term potentiation in the rat dentate gyrus in vivo. Brain Res 851(1):287–289PubMedCrossRefGoogle Scholar
  5. Ai J, Dekermendjian K, Wang X, Nielsen M, Witt MR (1997) 6-Methylflavone, a benzodiazepine receptor ligand with antagonistic properties on rat brain and human recombinant GABAA receptors in vitro. Drug Dev Res 41(2):99–106CrossRefGoogle Scholar
  6. Akhondzadeh S, Tahmacebi-Pour N, Noorbala A, Amini H, Fallah-Pour H, Jamshidi A et al (2005) Crocus sativus L. in the treatment of mild to moderate depression: a double blind, randomized and placebo controlled trial. Phytother Res 19:148–151PubMedCrossRefGoogle Scholar
  7. Akhondzadeh S, Sabet MS, Harirchian MH, Togha M, Cheraghmakani H, Razeghi S, … Rezazadeh SA (2010a) A 22-week, multicenter, randomized, double-blind controlled trial of Crocus sativus in the treatment of mild-to-moderate Alzheimer’s disease. Psychopharmacology 207(4):637–643PubMedCrossRefGoogle Scholar
  8. Akhondzadeh S, Sabet MS, Harirchian MH, Togha M, Cheraghmakani H, Razeghi S, … Zare F (2010b) Saffron in the treatment of patients with mild to moderate Alzheimer’s disease: a 16‐week, randomized and placebo‐controlled trial. J clin phar ther 35(5):581–588Google Scholar
  9. Alavizadeh SH, Hosseinzadeh H (2014) Bioactivity assessment and toxicity of crocin: a comprehensive review. Food Chem Toxicol 64:65–80PubMedCrossRefGoogle Scholar
  10. Al-Qudsi F, Ayedh A (2012) Effect of saffron on mouse embryo development. J Am Sci 8:1554–1568Google Scholar
  11. Altinoz E, Oner Z, Elbe H, Cigremis Y, Turkoz Y (2015) Protective effects of saffron (its active constituent, crocin) on nephropathy in streptozotocin-induced diabetic rats. Hum Exp Toxicol 34(2):127–134PubMedCrossRefGoogle Scholar
  12. Assimopoulou AN, Sinakos Z, Papageorgiou VP (2005) Radical scavenging activity of Crocus sativus L. extract and its bioactive constituents. Phytother Res 19:997–1000PubMedCrossRefGoogle Scholar
  13. Aung HH, Wang CZ, Ni M, Fishbein A, Mehendale SR, Xie JT, Shoyama CY, Yuan CS (2007) Crocin from Crocus sativus possesses significant antiproliferation effects on human colorectal cancer cells. Exp Oncol 29:175–180PubMedPubMedCentralGoogle Scholar
  14. Baba SA, Malik AH, Wani ZA, Mohiuddin T, Shah Z, Abbas N, Ashraf N (2015) Phytochemical analysis and antioxidant activity of different tissue types of Crocus sativus and oxidative stress alleviating potential of saffron extract in plants, bacteria, and yeast. S Afr J Bot 99:80–87CrossRefGoogle Scholar
  15. Bahashwan S, Hassan MH, Aly H, Ghobara MM, El-Beshbishy HA, Busati I (2015) Crocin mitigates carbon tetrachloride-induced liver toxicity in rats. J Taibah Univ Med Sci 10(2):140–149Google Scholar
  16. Bakshi H, Sam S, Rozati R, Sultan P, Islam T, Rathore B, … Saxena RC (2010) DNA fragmentation and cell cycle arrest: a hallmark of apoptosis induced by crocin from kashmiri saffron in a human pancreatic cancer cell line. Asian Pac J Cancer Prev 11(3):675–679Google Scholar
  17. Bani S, Pandey A, Agnihotri VK, Pathania V, Singh B (2011) Selective Th2 upregulation by Crocus sativus: a neutraceutical spice. Evid Based Complement Alternat Med 2011:1–9CrossRefGoogle Scholar
  18. Bathaie SZ, Kermani FMZ, Shams A (2011) Crocin bleaching assay using purified di- gentiobiosyl crocin (a-crocin) from Iranian saffron. Iran J Basic Med Sci 14:399–406PubMedPubMedCentralGoogle Scholar
  19. Bathaie SZ, Miri H, Mohagheghi MA, Mokhtari-Dizaji M, Shahbazfar AA, Hasanzadeh H (2013) Saffron aqueous extract inhibits the chemically-induced gastric cancer progression in the wistar albino rat. Iran J basic Med Sci 16(1):26–38Google Scholar
  20. Berger F, Hensel A, Nieber K (2011) Saffron extracts and trans-crocetin inhibit glutamatergic synaptic transmission in rat cortical brain slices. Neuroscience 180:238–247PubMedCrossRefGoogle Scholar
  21. Bhargava V (2011) Medicinal uses and pharmacological properties of Crocus sativus Linn (Saffron). Int J Pharm Pharm Sci 3(3):22–26Google Scholar
  22. Bors W, Saran M, Michel C (1982) Radical intermediates involved in the bleaching of the carotenoid crocin. Hydroxyl radicals, superoxide anions and hydrated electrons. Int J Radiat Biol Relat Stud Phys Chem Med 41:493–501PubMedCrossRefGoogle Scholar
  23. Bors W, Michel C, Saran M (1984) Inhibition of the bleaching of the carotenoid crocin a rapid test for quantifying antioxidant activity. Biochim Biophys Acta 796:312–319CrossRefGoogle Scholar
  24. Bountagkidou O, Van der Klift EJC, Tsimidou MZ, Ordoudi SA, Van Beek TA (2012) An on-line high performance liquid chromatography-crocin bleaching assay for detection of antioxidants. J Chromatogr A 1237:80–85PubMedCrossRefGoogle Scholar
  25. Chen Y, Yang T, Huang J, Tian X, Zhao C, Cai L, Feng LJ, Zhang H (2010a) Comparative evaluation of the antioxidant capacity of crocetin and crocin in vivo. Chin Pharmacol Bull 26:248–251Google Scholar
  26. Chen Y, Zhang H, Li YX, Cai L, Huang J, Zhao C, Jia L, Buchanan R, Yang T, Jiang LJ (2010b) Crocin and geniposide profiles and radical scavenging activity of gardenia fruits (Gardenia jasminoides Ellis) from different cultivars and at the various stages of maturation. Fitoterapia 81:269–273PubMedCrossRefGoogle Scholar
  27. Chen B, Hou ZH, Dong Z, Li CD (2015) Crocetin downregulates the proinflammatory cytokines in methylcholanthrene-induced rodent tumor model and inhibits COX-2 expression in cervical cancer cells. BioMed Res Int 2015:1–5Google Scholar
  28. Chew BP, Park JS (2004) Carotenoid action on the immune response. J Nutr 134(1):257S–261SPubMedCrossRefGoogle Scholar
  29. Chryssanthi DG, Lamari FN, Iatrou G, Pylara A, Karamanos NK, Cordopatis P (2007) Inhibition of breast cancer cell proliferation by style constituents of different Crocus species. Anticancer Res 27:357–362PubMedPubMedCentralGoogle Scholar
  30. Cryan JF, Sweeney FF (2011) The age of anxiety: role of animal models of anxiolytic action in drug discovery. Br J Pharmacol 164:1129–1161PubMedPubMedCentralCrossRefGoogle Scholar
  31. Dianat M, Esmaeilizadeh M, Badavi M, Samarbaf-zadeh AR, Naghizadeh B (2014) Protective effects of crocin on ischemia-reperfusion induced oxidative stress in comparison with vitamin E in isolated rat hearts. Jundishapur J Nat Pharm Prod 9(2):e17187PubMedPubMedCentralCrossRefGoogle Scholar
  32. Dong X, Song YN, Liu WG, Guo XL (2009) Mmp-9, a potential target for cerebral ischemic treatment. Curr Neuropharmacol 7:269PubMedPubMedCentralCrossRefGoogle Scholar
  33. Du P, Qian Z, Shen X, Rao S, Wen N (2005) Effectiveness of crocin against myocardial injury. Chin New Drugs J 14:1424Google Scholar
  34. El-Beshbishy HA, Hassan MH, Aly HAA, Doghish AS, Alghaithy AAA (2012) Crocin “saffron” protects against beryllium chloride toxicity in rats through diminution of oxidative stress and enhancing gene expression of antioxidant enzymes. Ecotoxicol Environ Saf 83:47–54PubMedCrossRefGoogle Scholar
  35. EL-Maraghy SA, Rizk SM, El-Sawalhi MM (2009) Hepatoprotective potential of crocin and curcumin against iron overload-induced biochemical alterations in rat. Afr J Biochem Res 3:215–221Google Scholar
  36. Escribano J, Alonso GL, Coca-Prados M, Fernandez JA (1996) Crocin, safranal and picrocrocin from saffron (Crocus sativus L.) inhibit the growth of human cancer cells in vitro. Cancer Lett 100:23–30PubMedCrossRefGoogle Scholar
  37. Farnsworth NR (1994) Ethnobotany and the search for new drugs. Wiley, ChichesterGoogle Scholar
  38. Farokhnia M, Shafiee Sabet M, Iranpour N, Gougol A, Yekehtaz H, Alimardani R, … Akhondzadeh S (2014) Comparing the efficacy and safety of Crocus sativus L. with memantine in patients with moderate to severe Alzheimer’s disease: a double‐blind randomized clinical trial. Hum Psychopharmacol Clin Exp 29(4):351–359CrossRefGoogle Scholar
  39. Freedman R (2003) Schizophrenia. N Engl J Med 349:1738–1749PubMedCrossRefGoogle Scholar
  40. Garc-Olmo DC, Riese HH, Escribano J, Onta J, Fernandez JA, Atiénzar M, Garcí-Olmo D (1999) Effects of long-term treatment of colon adenocarcinoma with crocin, a carotenoid from saffron (Crocus sativus L.): an experimental study in the rat. Nutr Cancer 35:120–126CrossRefGoogle Scholar
  41. Georgiadou G, Tarantilis PA, Pitsikas N (2012) Effects of the active constituents of Crocus sativus L.; crocins in an animal model of obsessive-compulsive disorder. Neurosci Lett 528:27–30PubMedCrossRefGoogle Scholar
  42. Geromichalos GD, Lamari FN, Papandreou MA, Trafalis DT, Margarity M, Papageorgiou A et al (2012) Saffron as a source of novel acetylcholinesterase inhibitors: molecular docking and in vitro enzymatic studies. J Agric Food Chem 60:6131–6138PubMedCrossRefGoogle Scholar
  43. Gorman JM (2003) New molecule targets for antianxiety interventions. J Clin Psychiatry 64:28–35PubMedPubMedCentralGoogle Scholar
  44. Goyal SN, Arora S, Sharma AK, Joshi S, Ray R, Bhatia J, … Arya DS (2010) Preventive effect of crocin of Crocus sativus on hemodynamic, biochemical, histopathological and ultrastructural alterations in isoproterenol-induced cardiotoxicity in rats. Phytomedicine 17(3):227–232PubMedCrossRefGoogle Scholar
  45. Gresta F, Avola G, Lombardo GM, Siracusa L, Ruberto G (2009) Analysis of flowering, stigmas yield and qualitative traits of saffron (Crocus sativus L.) as affected by environmental conditions. Sci Hortic 119(3):320–324CrossRefGoogle Scholar
  46. Halatei BS, Khosravi M, Sahrei H, Golmanesch L, Zardooz H, Jalili C, Ghoshoomi H (2011) Saffron (Crocus sativus) aqueous extract and its constituent crocin reduces stress-induced anorexia in mice. Phytother Res 25:1833–1838CrossRefGoogle Scholar
  47. Hammer MB, Robert S, Fruech BS (2004) Treatment-resistant posttraumatic stress disorder: strategies for intervention. CNS Spectr 9:740–752CrossRefGoogle Scholar
  48. Han YN, Oh HK, Hwang KH, Lee MS (1994) Antioxidant components of Gardenia fruit. Kor J Pharm 25:226–232Google Scholar
  49. Hassani FV, Naseri V, Razavi BM, Mehri S, Abnous K, Hosseinzadeh H (2014) Antidepressant effects of crocin and its effects on transcript and protein levels of CREB, BDNF, and VGF in rat hippocampus. DARU J Pharm Sci 22(1):1CrossRefGoogle Scholar
  50. He SY, Qian ZY, Tang FT, Wen N, Xu GL, Sheng L (2005) Effect of crocin on experimental atherosclerosis in quails and its mechanisms. Life Sci 77(8):907–921PubMedCrossRefGoogle Scholar
  51. He SY, Qian ZY, Wen N, Tang FT, Xu GL, Zhou CH (2007a) Influence of crocetin on experimental atherosclerosis in hyperlipidemic-diet quails. Eur J Pharmacol 554(2–3):191–195PubMedCrossRefGoogle Scholar
  52. He SY, Qian ZY, Wen N, Tang FT, Xu GL, Zhou CH (2007b) Influence of crocetin on experimental atherosclerosis in hyperlipidemic-diet quails. Eur J Pharmacol 554:191–195PubMedCrossRefGoogle Scholar
  53. Himeno H, Sano K (1987) Synthesis of crocin, picrocrocin and safranal by saffron stigma-like structures proliferated in vitro. Agric Biol Chem 9(51):2395–2400Google Scholar
  54. Hosseinzadeh H, Jahanian Z (2010) Effect of Crocus sativus L. (saffron) stigma and its constituents, crocin and safranal, on morphine withdrawal syndrome in mice. Phytother Res 24(5):726–730PubMedPubMedCentralGoogle Scholar
  55. Hosseinzadeh H, Nassiri‐Asl M (2013) Avicenna’s (Ibn Sina) the canon of medicine and saffron (Crocus sativus): a review. Phytother Res 27(4):475–483PubMedCrossRefGoogle Scholar
  56. Hosseinzadeh H, Noraei NB (2009) Anxiolytic and hypnotic effect of Crocus sativus aqueous extract and its constituent, crocins and safranal in mice. Phytother Res 23:768–774PubMedCrossRefGoogle Scholar
  57. Hosseinzadeh H, Ziaei T (2006) Effects of Crocus sativus stigma extract and its constituents, crocin and safranal, on intact memory and scopolamine-induced learning deficits in rats performing the Morris water maze task. J Med Plants 3(19):40–50Google Scholar
  58. Hosseinzadeh H, Motamedshariaty V, Hadizadeh F (2007) Antidepressant effect of kaempferol, a constituent of saffron (Crocus sativus) petal, in mice and rats. Pharmacologyonline 2:367–370Google Scholar
  59. Hosseinzadeh H, Sadeghnia HR, Rahimi A (2008a) Effects of safranal on extracellular hippocampal levels of glutamate and aspartate during kainic acid treatment in anesthetized rats. Planta Med 74:1441–1445PubMedCrossRefGoogle Scholar
  60. Hosseinzadeh H, Ziaee T, Sadeghi A (2008b) The effect of saffron, Crocus sativus stigma, extract and its constituents, safranal and crocin on sexual behaviors in normal male rats. Phytomedicine 15:491–495PubMedCrossRefGoogle Scholar
  61. Hosseinzadeh H, Modaghegh MH, Saffari Z (2009a) Crocus sativus L. (Saffron) extract and its active constituents (crocin and safranal) on ischemia-reperfusion in rat skeletal muscle. Evid Based Complement Alternat Med 6:343–350PubMedCrossRefGoogle Scholar
  62. Hosseinzadeh H, Shamsaie F, Mehri S, (2009b) Antioxidant activity of aqueous and ethanolic extracts of Crocus sativus L. stigma and its bioactive constituents, crocin and safranal. Pharmacogn Mag 5:419Google Scholar
  63. Hosseinzadeh H, Sadeghnia HR, Ghaeni FA, Motamedshariaty VS, Mohajeri SA (2012) Effects of saffron (Crocus sativus L.) and its active constituent, crocin, on recognition and spatial memory after chronic cerebral hypoperfusion in rats. Phytother Res 26:381–386Google Scholar
  64. Imenshahidi M, Zafari H, Hosseinzadeh H (2011) Effects of crocin on the acquisition and reinstatement of morphine-induced conditioned place preference in mice. Pharmacologyonline 1:1007–1013Google Scholar
  65. Inoue E, Shimizu Y, Shoji M, Tsuchida H, Sano Y, Ito C (2005) Pharmacological properties of N-095, a drug containing red ginseng, polygala root, saffron, antelope horn and aloe wood. Am J Chin Med 33(1):49–60PubMedCrossRefGoogle Scholar
  66. Iyengar S, Mick S, Dilworth V, Michel J, Rao TS, Farah JM, Wood PL (1990) Sigma receptors modulate the hypothalamic-pituitary-adrenal (HPA) axis centrally: evidence for a functional interaction with NMDA receptors, in vivo. Neuropharmacology 29(3):299–303PubMedCrossRefGoogle Scholar
  67. Jain P, Pareek A, Ratan Y, Sharma S, Paliwal S (2013) Free radicals and dietary antioxidants: a potential review. Int J Pharm Sci Rev Res 18:34–48Google Scholar
  68. Kadian SS, Garg M (2012) Pharmacological effects of carotenoids: a review. Int J Pharm Sci Res 3(1):42Google Scholar
  69. Kampa M, Nistikaki A, Tsaousis V, Maliaraki N, Notas G, Castanas E (2002) A new automated method for the determination of the Total Antioxidant Capacity (TAC) of human plasma, based on the crocin bleaching assay. BMC Clin Pathol 2:1–16CrossRefGoogle Scholar
  70. Karimi G, Taiebi N, Hosseinzadeh H, Shirzad F (2004) Evaluation of subacute toxicity of aqueous extract of Crocus sativus L. stigma and petal in rats. J Med Plants 3:29–35Google Scholar
  71. Kawabata K, Tung NH, Shoyama Y, Sugie S, Mori T, Tanaka T (2012) Dietary crocin inhibits colitis and colitis-associated colorectal carcinogenesis in male ICR mice. Evid-Based Complement Alternat Med 2012:1–3CrossRefGoogle Scholar
  72. Kianbakht S, Mozaffari K (2009) Effects of saffron and its active constituents, crocin and safranal, on prevention of indomethacin induced gastric ulcers in diabetic and nondiabetic rats. فصلنامه علمی پژوهشی گیاهان دارویی, 1(29):30–38Google Scholar
  73. Konoshima T, Takasaki M, Tokuda H, Morimoto S, Tanaka H, Kawata E, Xuan L, Saito H, Sugiura M, Molnar J (1998) Crocin and crocetin derivatives inhibit skin tumour promotion in mice. Phytother Res 12:400–404CrossRefGoogle Scholar
  74. Lechtenberg M, Schepmann D, Niehues M, Hellenbrand N, Wunsch B, Hensel A (2008) Quality and functionality of saffron: quality control, species assortment and affinity of extract and isolated saffron compounds to NMDA and sigma ~ 1 (sigma-1) receptors. Planta Med 74(7):764PubMedCrossRefGoogle Scholar
  75. Lee IA, Lee JH, Baek NI, Kim DH (2005) Antihyperlipidemic effect of crocin isolated from the fructus of Gardenia jasminoides and its metabolite crocetin. Biol Pharm Bull 28:2106–2110PubMedCrossRefGoogle Scholar
  76. Liu J, Qian Z (2005) Effects of crocin on cholestane-3beta-5alpha-6beta-triol-induced apoptosis and related gene expression of cultured endothelial cells. J Chin Pharm Univ 36:254Google Scholar
  77. Lv CF, Luo CL, Ji HY, Zhao P (2008) Influence of crocin on gene expression profile of human bladder cancer cell lines T24. Zhongguo Zhong yao za zhi= Zhongguo zhongyao zazhi= China journal of Chinese materia medica 33(13):1612–1617PubMedPubMedCentralGoogle Scholar
  78. Marder M, Estiú G, Blanch LB, Viola H, Wasowski C, Medina JH, Paladini AC (2001) Molecular modeling and QSAR analysis of the interaction of flavone derivatives with the benzodiazepine binding site of the GABA A receptor complex. Bioorg Med Chem 9(2):323–335PubMedCrossRefGoogle Scholar
  79. Mehri S, Abnous K, Mousavi SH, Shariaty VM, Hosseinzadeh H (2012) Neuroprotective effect of crocin on acrylamide-induced cytotoxicity in PC12 cells. Cell Mol Neurobiol 32:227–235PubMedCrossRefGoogle Scholar
  80. Miller DB, O’Callaghan JP (2002) Neuroendocrine aspects of the response to stress. Metabolism 51(6):5–10PubMedCrossRefGoogle Scholar
  81. Moghaddam B, Adams B, Verma A, Daly D (1997) Activation of glutamatergic neurotransmission by ketamine: a novel step in the pathway from NMDA receptor blockade to dopaminergic and cognitive disruptions associated with the prefrontal cortex. J Neurosci 17(8):2921–2927PubMedCrossRefGoogle Scholar
  82. Moghaddasi MS (2010) Saffron chemicals and medicine usage. J Med Plants Res 4(6):427–430Google Scholar
  83. Mousavi SH, Tayarani NZ, Parsaee H (2010) Protective effect of saffron extract and crocin on reactive oxygen species-mediated high glucose-induced toxicity in pc12 cells. Cell Mol Neurobiol 30:185–191PubMedCrossRefGoogle Scholar
  84. Mousavi SH, Moallem SA, Mehri S, Shahsavand S, Nassirli H, Malaekeh-Nikouei B (2011) Improvement of cytotoxic and apoptogenic properties of crocin in cancer cell lines by its nanoliposomal form. Pharm Biol 49(10):1039–1045PubMedCrossRefGoogle Scholar
  85. Mousavi B, Bathaie SZ, Fadai F, Ashtari Z (2015) Safety evaluation of saffron stigma (Crocus sativus L.) aqueous extract and crocin in patients with schizophrenia. Avicenna J Phytomedicine 5(5):413Google Scholar
  86. Namin MH, Ebrahimzadeh H, Ghareyazie B, Radjabian T, Gharavi S, Tafreshi N (2009) In vitro expression of apocarotenoid genes in Crocus sativus L. Afr J Biotechnol 8(20):5378–5382Google Scholar
  87. Noureini SK, Wink M (2012) Antiproliferative effects of crocin in HepG2 cells by telomerase inhibition and hTERT down-regulation. Asian Pac J Cancer Prev 13(5):2305–2309PubMedCrossRefGoogle Scholar
  88. Ochiai T, Soeda S, Ohno S, Tanaka H, Shoyama Y, Shimeno H (2004a) Crocin prevent the death of PC-12 cells through sphingomyelinase-ceramide signaling by increasing glutathione synthesis. Neurochem Int 44:321–330PubMedCrossRefGoogle Scholar
  89. Ochiai T, Ohno S, Soeda S, Tanaka H, Shoyama Y, Shimeno H (2004b) Crocin prevents the death of rat pheochromocytoma (PC-12) cells by its antioxidant effects stronger than those of a-tocopherol. Neurosci Lett 362:61–64PubMedCrossRefGoogle Scholar
  90. Ordoudi SA, Befani CD, Nenadis N, Koliakos GG, Tsimidou MZ (2009) Further examination of antiradical properties of crocus sativus stigmas extract rich in crocins. J Agric Food Chem 57:3080–3086PubMedCrossRefGoogle Scholar
  91. Papandreou MA, Tsachaki M, Efthimiopoulos S, Cordopatis P, Lamari FN, Margarity M (2011) Memory enhancing effects of saffron in aged mice are correlated with antioxidant protection. Behav Brain Res 219(2):197–204PubMedCrossRefGoogle Scholar
  92. Parizadeh MR, Ghafoori Gharib F, Abbaspour AR, Tavakol Afshar J, Ghayour-Mobarhan M (2011) Effects of aqueous saffron extract on nitric oxide production by two human carcinoma cell lines: hepatocellular carcinoma (HepG2) and laryngeal carcinoma (Hep2). Avicenna J Phytomedicine 1(1):43–50Google Scholar
  93. Perez-Rodriguez L, Mougeot F, Alonso-Alvarez C, Blas J, Viñuela J, Bortolotti GR (2008) Cell-mediated immune activation rapidly decreases plasma carotenoids but does not affect oxidative stress in red-legged partridges (Alectoris rufa). J Exp Biol 211(13):2155–2161PubMedCrossRefGoogle Scholar
  94. Pfister S, Meyer P, Steck A, Pfander H (1996) Isolation and structure elucidation of carotenoid-glycosyl esters in gardenia fruits (Gardenia jasminoides Ellis) and saffron (Crocus sativus Linne). J Agric Food Chem 44(9):2612–2615CrossRefGoogle Scholar
  95. Pham TQ, Cormier F, Farnworth E, Tong VH, Van Calsteren MR (2000) Antioxidant properties of crocin from Gardenia jasminoides Ellis and study of the reactions of crocin with linoleic acid and crocin with oxygen. J Agric Food Chem 48:1455–1461PubMedCrossRefGoogle Scholar
  96. Pitsikas N, Zisopoulou S, Tarantilis PA, Kanakis CD, Polissiou MG, Sakellaridis N (2007) Effects of the active constituents of Crocus sativus L., crocins on recognition and spatial rats memory. Behav Brain Res 183:141–146PubMedCrossRefGoogle Scholar
  97. Pitsikas N, Boultadakis A, Georgiadou G, Tarantilis PA, Sakellaridis N (2008) Effects of the active constituents of Crocus sativus L., crocins, in an animal model of anxiety. Phytomedicine 15:1135–1139PubMedCrossRefGoogle Scholar
  98. Pratt J, Winchester C, Dawson N, Morris B (2012) Advancing schizophrenia drug discovery: optimizing rodent models to bridge the translational gap. Nat Rev Drug Discov 11(7):560–579PubMedCrossRefGoogle Scholar
  99. Raina BL, Agarwal SG, Bhatia AK, Gaur GS (1996) Changes in pigments and volatiles of saffron (Crocus sativus L.) during processing and storage. J Sci Food Agric 71:27–32CrossRefGoogle Scholar
  100. Rastgoo M, Hosseinzadeh H, Alavizadeh H, Abbasi A, Ayati Z, Jaafari MR (2013) Antitumor activity of PEGylated nanoliposomes containing crocin in mice bearing C26 colon carcinoma. Planta Med 79:447–451PubMedCrossRefGoogle Scholar
  101. Rezaee R, Hosseinzadeh H (2013) Safranal: from an aromatic natural product to a rewarding pharmacological agent. Iran J Basic Med Sci 16(1):12PubMedPubMedCentralGoogle Scholar
  102. Richelson E (1994) Pharmacology of antidepressants characteristics of the ideal drug. Mayo Clin Proc 69:1069–1081PubMedCrossRefGoogle Scholar
  103. Sadeghnia HR, Cortez MA, Liu D, Hosseinzadeh H, Carter Snead O (2008) Antiabsence effects of safranal in acute experimental seizure models: EEG and autoradiography. J Pharm Pharm Sci 11:1–14PubMedCrossRefGoogle Scholar
  104. Saleem S, Ahmad M, Ahmad AS, Yousuf S, Ansari MA, Khan MB, Ishrat T, Islam F (2006) Effect of saffron (Crocus sativus) on neurobehavioral and neurochemical changes in cerebral ischemia in rats. J Med Food 9:246–253PubMedCrossRefGoogle Scholar
  105. Shen XC, Qian ZY, Chen Q, Wang YJ (2004) Protective effect of crocetin on primary culture of cardiac myocyte treated with noradrenaline in vitro. Acta Pharm Sin 39(10):787–791Google Scholar
  106. Sheng L, Qian Z, Zheng S, Xi L (2006) Mechanism of hypolipidemic effect of crocin in rats: crocin inhibits pancreatic lipase. Eur J Pharmacol 543:116–122PubMedCrossRefGoogle Scholar
  107. Shiping M, Baolin L, Sudi Z (1999) Pharmacological studies of glycosides of saffron Crocus (Crocus sativus) effects on blood coagulation, platelet aggregation and thrombosis. Chin Trad Herb Drugs 3:196–198Google Scholar
  108. Soeda S, Ochiai T, Shimeno H, Saito H, Abe K, Tanaka H, Shoyama Y (2007) Pharmacological activities of crocin in saffron. J Nat Med 61:102–111CrossRefGoogle Scholar
  109. Steeds H, Carhart-Harris RL, Stone JM (2015) Drug models of schizophrenia. Ther Adv Psychopharmacol 5:43–58PubMedPubMedCentralCrossRefGoogle Scholar
  110. Sun J, Xu XM, Ni CZ, Zhang H, Li XY, Zhang CL, Liu YR, Li SF, Zhou QZ, Zhou HM (2011) Crocin inhibits proliferation and nucleic acid synthesis and induces apoptosis in the human tongue squamous cell carcinoma cell line tca8113. Asian Pac J Cancer Prev 12:2679–2683PubMedPubMedCentralGoogle Scholar
  111. Talaei A, Moghadam MH, Tabassi SAS, Mohajeri SA (2015) Crocin, the main active saffron constituent, as an adjunctive treatment in major depressive disorder: a randomized, double-blind, placebo-controlled, pilot clinical trial. J Affect Disord 174:51–56PubMedCrossRefGoogle Scholar
  112. Tamaddonfard E, Gooshchi NH, Seiednejad-Yamchi S (2012) Central effect of crocin on penicillin-induced epileptiform activity in rats. Pharmacol Rep 64:94–101PubMedCrossRefGoogle Scholar
  113. Tanaka T, Shnimizu M, Moriwaki H (2012) Cancer chemoprevention by carotenoids. Molecules 17(3):3202–3242PubMedCrossRefGoogle Scholar
  114. Tarantilis PA, Tsoupras G, Polissiou M (1995) Determination of saffron (Crocus sativus L.) components in crude plant extract using high-performance liquid chromatography-UV/Visible photodiode-array detection-mass spectrometry. J Chromatogr 699:107–118CrossRefGoogle Scholar
  115. Tubaro F, Micossi E, Ursini F (1996) The antioxidant capacity of complex mixtures by kinetic analysis of crocin bleaching inhibition. J Am Oil Chem Soc 73:173–179CrossRefGoogle Scholar
  116. Wang Y, Han T, Zhu Y, Zheng CJ, Ming QL, Rahman K, Qin LP (2010) Antidepressant properties of bioactive fractions from the extract of Crocus sativus L. J Nat Med 64(1):24–30PubMedCrossRefGoogle Scholar
  117. Wang Y, Sun J, Liu C, Fang C (2014) Protective effects of crocetin pretreatment on myocardial injury in an ischemia/reperfusion rat model. Eur J Pharmacol 741:290–296PubMedCrossRefGoogle Scholar
  118. Xu G, Gong Z, Yu W, Gao L, He S, Qian Z (2007) Increased expression ratio of bcl-2/bax is associated with crocin-mediated apoptosis in bovine aortic endothelial cells. Basic Clin Pharmacol Toxicol 100:31–35PubMedCrossRefGoogle Scholar
  119. Xu GL, Li G, Ma HP, Zhong H, Liu F, Ao GZ (2009) Preventive effect of crocin in inflamed animals and in LPS-challenged RAW 264.7 cells. J Agric Food Chem 57(18):8325–8330PubMedCrossRefGoogle Scholar
  120. Xu HJ, Zhong R, Zhao YX, Li XR, Lu Y, Song AQ, … Sun LR (2010) [Proliferative inhibition and apoptotic induction effects of crocin on human leukemia HL-60 cells and their mechanisms]. Zhongguo shi yan xue ye xue za zhi/Zhongguo bing li sheng li xue hui= J Exp Hematol/Chin Assoc Pathophysiol 18(4):887–892Google Scholar
  121. Xuan B, Zhou YH, Li NA, Min ZD, Chiou GC (1999) Effects of crocin analogs on ocular blood flow and retinal function. J Ocul Pharmacol Ther 15(2):143–152PubMedCrossRefGoogle Scholar
  122. Yang HJ, Park M, Lee HS (2011) Antioxidative activities and components of Gardenia jasminoides. Kor J Food Sci Technol 43:51–57CrossRefGoogle Scholar
  123. Zhao P, Luo CL, Wu XH, Hu HB, Lv CF, Ji HY (2008) Proliferation apoptotic influence of crocin on human bladder cancer T24 cell line. Zhongguo Zhong yao za zhi= Zhongguo zhongyao zazhi= China journal of Chinese materia medica 33(15):1869–1873PubMedPubMedCentralGoogle Scholar
  124. Zheng S, Qian Z, Tang F, Sheng L (2005) Suppression of vascular cell adhesion molecule-1 expression by crocetin contributes to attenuation of atherosclerosis in hypercholesterolemic rabbits. Biochem Pharmacol 70(8):1192–1199PubMedCrossRefGoogle Scholar
  125. Zheng YQ, Liu JX, Wang JN, Xu L (2007) Effects of crocin on reperfusion induced oxidative/nitrative injury to cerebral microvessels after global cerebral ischemia. Brain Res 1138:86–94PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2016

Authors and Affiliations

  • Shoib Ahmad Baba
    • 1
  • Nasheeman Ashraf
    • 1
  1. 1.Department of Plant biotechnologyIndian Institute of Integrative MedicineSrinagarIndia

Personalised recommendations