Apocarotenoid Biosynthesis in Crocus sativus L.

  • Shoib Ahmad Baba
  • Nasheeman Ashraf
Part of the SpringerBriefs in Plant Science book series (BRIEFSPLANT)


Apocarotenoids are oxidative cleavage products of carotenoids. These molecules play vital physiological and developmental roles in plants. Besides this, apocarotenoids also hold tremendous pharmacological importance. Apocarotenoids are ubiquitously found across plant kingdom, but Crocus sativus (saffron) is the only source of some unique and economically important apocarotenoids. These apocarotenoids include crocin, picrocrocin, and safranal which besides having pharmacological importance are also responsible for the color, flavor, and aroma of the world’s costliest spice (saffron). Apocarotenoid biosynthesis in C. sativus is regulated throughout the life cycle with active changes in apocarotenoid composition of stigma due to developmental stage-specific requirements and in response to external environmental cues. Although the biosynthesis of these unique C. sativus apocarotenoids has been elucidated to a greater extent, there are still some missing links in the pathway. Besides, only a few studies have been carried out on the regulation, tissue- and developmental-specific accumulation, and transport of apocarotenoids in C. sativus as well as in other plants. The present review is an organized attempt to gain insights about the biosynthesis, regulation, and transport of apocarotenoids in C. sativus.


Crocus sativus Apocarotenoids Crocin Safranal Carotenoid cleavage dioxygenase 


  1. Aharoni A, Giri AP, Deuerlein S, Griepink F, de Kogel W-J, Verstappen FWA, Verhoeven HA, Jongsma MA, Schwab W, Bouwmeester HJ (2003) Terpenoid metabolism in wild-type and transgenic Arabidopsis plants. Plant Cell 15:2866–2884PubMedPubMedCentralCrossRefGoogle Scholar
  2. Ahraze O, Rubio-Moraga A, López RC, Gómez-Gómez L (2009) The expression of a chromoplast-specific lycopene beta cyclase gene is involved in the high production of saffron’s apocarotenoid precursors. J Exp Bot 61:105–119Google Scholar
  3. Alonso GL, Salinas MR, Garijo J, Sánchez-Fernández MA (2001) Composition of crocins and picrocrocin from Spanish saffron (Crocus sativus L.). J Food Qual 24:219–233CrossRefGoogle Scholar
  4. Ashraf N, Jain D, Vishwakarma RA (2015) Identification, cloning and characterization of an ultrapetala transcription factor CsULT1 from Crocus: a novel regulator of apocarotenoid biosynthesis. BMC plant biology 15:25PubMedPubMedCentralCrossRefGoogle Scholar
  5. Auldridge ME, McCarty DR, Klee HJ (2006a) Plant carotenoid cleavage oxygenases and their apocarotenoid products. Curr Opin Plant Biol 9:315–321PubMedCrossRefGoogle Scholar
  6. Auldridge ME, Block A, Vogel JT, Dabney-Smith C, Mila I, Bouzayen M, Magallanes-Lundback M, DellaPenna D, McCarty DR, Klee HJ (2006b) Characterization of three members of the Arabidopsis carotenoid cleavage dioxygenase family demonstrates the divergent roles of this multifunctional enzyme family. Plant J 45:982–993PubMedCrossRefGoogle Scholar
  7. Azuma H et al (2002) Floral scent chemistry of mangrove plants. J Plant Res 115:47–53PubMedCrossRefGoogle Scholar
  8. Baba SA, Malik AH, Wani ZA, Mohiuddin T, Shah Z, Abbas N, Ashraf N (2015a) Phytochemical analysis and antioxidant activity of different tissue types of Crocus sativus and oxidative stress alleviating potential of saffron extract in plants, bacteria, and yeast. S Afr J Bot 31(99):80–87CrossRefGoogle Scholar
  9. Baba SA, Mohiuddin T, Basu S, Swarnkar MK, Malik AH, Wani ZA, Abbas N, Singh AK, Ashraf N (2015b) Comprehensive transcriptome analysis of Crocus sativus for discovery and expression of genes involved in apocarotenoid biosynthesis. BMC Genomics 16(1):1CrossRefGoogle Scholar
  10. Baba SA, Jain D, Abbas N, Ashraf N (2015c) Overexpression of Crocus carotenoid cleavage dioxygenase, CsCCD4b, in Arabidopsis imparts tolerance to dehydration, salt and oxidative stresses by modulating ROS machinery. J Plant Physiol 189:114–125PubMedCrossRefGoogle Scholar
  11. Bouvier F, Suire C, Mutterer J, Camara B (2003) Oxidative remodeling of chromoplast carotenoids: identification of the carotenoid dioxygenase CsCCD and CsZCD genes involved in Crocus secondary metabolite biogenesis. Plant Cell 15:47–62PubMedPubMedCentralCrossRefGoogle Scholar
  12. Bouvier F, Isner JC, Dogbo O, Camara B (2005) Oxidative tailoring of carotenoids: a prospective towards novel functions in plants. Trends Plant Sci 10:187–194PubMedCrossRefGoogle Scholar
  13. Brandi F, Bar E, Mourgues F, Horváth G, Turcsi E, Giuliano G, Liverani A, Tartarini S, Lewinshon E, Rosati C (2011) Study of ‘RedHaven’ peach and its white-fleshed mutant suggests a key role of CCD4 carotenoid dioxygenase in carotenoid and norisoprenoid volatile metabolism. BMC Plant Biol 11:1–24CrossRefGoogle Scholar
  14. Britton G, Liaaen-Jensen S, Pfander H (eds) (2009) Carotenoids volume 5: nutrition and health, vol 5. Springer Science & Business MediaGoogle Scholar
  15. Bugg TDH, Ahmad M, Hardiman EM, Rahmanpour R (2011) Nat Prod Rep 28:1883–1896PubMedCrossRefGoogle Scholar
  16. Camara B, Hugueney P, Bouvier F, Kuntz M, Monéger R (1995) Biochemistry and molecular biology of chromoplasts development. Int Rev Cytol 163:175–247PubMedCrossRefGoogle Scholar
  17. Campbell EJ, Schenk PM, Kazan K, Penninckx IA, Anderson JP, Maclean DJ, Cammue BP, Ebert PR, Manners JM (2003) Pathogen-responsive expression of a putative ATP-binding cassette transporter gene conferring resistance to the diterpenoid sclareol is regulated by multiple defense signaling pathways in Arabidopsis. Plant Physiol 133:1272–1284PubMedPubMedCentralCrossRefGoogle Scholar
  18. Carmona M, Zalacain A, Sánchez A, Novella J, Alonso G (2006) Crocetin esters, picrocrocin and its related compounds present in Crocus sativus stigmas and Gardenia jasminoides fruits. Tentative identification of seven new compounds by LC–ESI-MS. J Agric Food Chem 54:973PubMedCrossRefGoogle Scholar
  19. Castillo R, Fernández JA, Gómez-Gómez L (2005) Implications of carotenoid biosynthetic genes in apocarotenoid formation during the stigma development of Crocus sativus and its closer relatives. Plant Physiol 139(2):674–689PubMedPubMedCentralCrossRefGoogle Scholar
  20. Cazzonelli CI et al (2009) Regulation of carotenoid composition and shoot branching in Arabidopsis by a chromatin modifying histone methyltransferase, SDG8. Plant Cell 21(1):39–53PubMedPubMedCentralCrossRefGoogle Scholar
  21. Cazzonelli CI, Pogson BJ (2010) Source to sink: regulation of carotenoid biosynthesis in plants. Trends Plant Sci 15(5):266–274PubMedCrossRefGoogle Scholar
  22. Chaudhary N et al (2010) Carotenoid biosynthesis genes in rice: structural analysis, genome-wide expression profiling and phylogenetic analysis. Mol Genet Genomics 283:13–33PubMedCrossRefGoogle Scholar
  23. Corona V et al (1996) Regulation of a carotenoid biosynthesis gene promoter during plant development. Plant J 9:505–512PubMedCrossRefGoogle Scholar
  24. Cote F, Cormier F, Dufresne C et al (2001) A highly specific glucosyltransferase is involved in the synthesis of crocetin glucosylesters in Crocus sativus cultured cells. J Plant Physiol 158:553–560CrossRefGoogle Scholar
  25. Crotty WJ, Ledbetter MC (1973) Membrane continuities involving chloroplasts and other organelles in plant cells. Science 182(4114):839–841PubMedCrossRefGoogle Scholar
  26. Curro P, Lanuza F, Micali G (1986) Valutazione Della frazione volatile dello zafferano mediante gascromatografia dello spazio di testa. Rass Chimica 6:331–334Google Scholar
  27. Davies KM (2007) Genetic modification of plant metabolism for human health benefits. Mutat Res 622:122–137PubMedCrossRefGoogle Scholar
  28. DellaPenna D, Pogson BJ (2006) Vitamin synthesis in plants: tocopherols and carotenoids. Annu Rev Plant Biol 57:711–738PubMedCrossRefGoogle Scholar
  29. Dhingra V, Seshadri T, Mukerjee S (1975) Minor carotenoid glycosides from saffron (Crocus sativus). Ind J Chem 13:339–341Google Scholar
  30. Donaldson JMI et al (1990) Floral attractants for the Cetoniinae and Rutelinae (Coleoptera: Scarabaeidae). J Econ Entomol 83:1298–1305CrossRefGoogle Scholar
  31. Dong H et al (2007) The Arabidopsis spontaneous cell death1 gene, encoding a zeta-carotene desaturase essential for carotenoid biosynthesis, is involved in chloroplast development, photoprotection and retrograde signalling. Cell Res 17:458–470PubMedCrossRefGoogle Scholar
  32. Dufresne C, Cormier F, Dorion S, Niggli UA, Pfister S, Pfander H (1999) Glycosylation of encapsulated crocetin by a Crocus sativus L. cell culture. Enzym Microb Technol 24(8):453–462CrossRefGoogle Scholar
  33. Eroglu A, Harrison EH (2013) Carotenoid metabolism in mammals, including man: formation, occurrence, and function of apocarotenoids. J Lipid Res 54:1719–1730PubMedPubMedCentralCrossRefGoogle Scholar
  34. Fang J et al (2008) Mutations of genes in synthesis of the carotenoid precursors of ABA lead to pre-harvest sprouting and photo-oxidation in rice. Plant J 54:177–189PubMedPubMedCentralCrossRefGoogle Scholar
  35. Farre G et al. (2010) Travel advice on the road to carotenoids in plants. Plant Sci 179:28–48CrossRefGoogle Scholar
  36. Farré-Armengol G, Filella I, Llusia J, Peñuelas J (2013) Floral volatile organic compounds: between attraction and deterrence of visitors under global change. Perspect Plant Ecol Evol Syst 15(1):56–67CrossRefGoogle Scholar
  37. Flath RA et al (1994) Alpha-ionol as attractant for trapping Batrocera latifrons (Diptera: Tephritidae). J Econ Entomol 87:1470–1476CrossRefGoogle Scholar
  38. Fraser PD, Bramley PM (2004) The biosynthesis and nutritional uses of carotenoids. Prog Lipid Res 43:228–265PubMedCrossRefGoogle Scholar
  39. Frusciante S, Diretto G, Bruno M, Ferrante P, Pietrella M, Prado-Cabrero A et al (2014) Novel carotenoid cleavage dioxygenase catalyzes the first dedicated step in saffron crocin biosynthesis. Proc Natl Acad Sci U S A 111:12246–12251PubMedPubMedCentralCrossRefGoogle Scholar
  40. Gomez-Roldan V, Fermas S, Brewer PB, Puech-Pages V, Dun EA, Pillot JP, Letisse F, Matusova R, Danoun S, Portais JC, Nouwmeester H, Becard G, Beveridge CA, Huang FC, Molnár P, Schwab W (2009) Cloning and functional characterization of carotenoid cleavage dioxygenase 4 genes. J Exp Bot 60:3011–3022CrossRefGoogle Scholar
  41. Gonzalez-Jorge S, Ha S, Magallanes-Lundback M, Gilliland LU, Zhou A, Lipka AE, Nguyen YN, Angelovici R, Lin H, Cepela J, Little H, hBuell CR, Gore MA, Della-Penna D (2013) Carotenoid cleavage dioxygenase 4 is a negative regulator of b-carotene content in Arabidopsis seeds. Plant Cell 25:4812–4826PubMedPubMedCentralCrossRefGoogle Scholar
  42. Gregory MJ, Menary RC, Davies NW (2005) Effect of drying temperature and air flow on the production and retention of secondary metabolites in saffron. J Agric Food Chem 53:5969–5975PubMedCrossRefGoogle Scholar
  43. Halliwell B (2006) Oxidative stress and neurodegeneration; where are we now? J Neurochem 97:1634–1658PubMedCrossRefGoogle Scholar
  44. Halliwell B (2007) Oxidative stress and cancer: have we moved forward? Biochem J 401:1–11PubMedCrossRefGoogle Scholar
  45. Himeno H, Sano K (1987) Synthesis of crocin, picrocrocin and safranal by saffron stigma-like structures proliferated in vitro. Agric Biol Chem 9(51):2395–2400Google Scholar
  46. Howitt CA et al (2009) Alternative splicing, activation of cryptic exons and amino acid substitutions in carotenoid biosynthetic genes are associated with lutein accumulation in wheat endosperm. Funct Integr Genomics 9:363–376PubMedCrossRefGoogle Scholar
  47. Isaacson T et al (2002) Cloning of tangerine from tomato reveals a carotenoid isomerase essential for the production of beta-carotene and xanthophylls in plants. Plant Cell 14:333–342PubMedPubMedCentralCrossRefGoogle Scholar
  48. Isaacson T et al (2004) Analysis in vitro of the enzyme CRTISO establishes a poly-cis-carotenoid biosynthesis pathway in plants. Plant Physiol 136:4246–4255PubMedPubMedCentralCrossRefGoogle Scholar
  49. Jasinski M, Stukkens Y, Degand H, Purnelle B, Marchand-Brynaert J, Boutry M (2001) A plant plasma membrane ATP binding cassette-type transporter is involved in antifungal terpenoid secretion. Plant Cell 13:1095–1107PubMedPubMedCentralCrossRefGoogle Scholar
  50. Kamoda S, Saburi Y (1993) Biotechnol Biochem 57:926–930CrossRefGoogle Scholar
  51. Kang J et al (2010) PDR-type ABC transporter mediates cellular uptake of the phytohormone abscisic acid. Proc Natl Acad Sci U S A 107:2355–2360PubMedPubMedCentralCrossRefGoogle Scholar
  52. Kanno Y et al (2012) Identification of an abscisic acid transporter by functional screening using the receptor complex as a sensor. Proc Natl Acad Sci U S A 109:9653–9658PubMedPubMedCentralCrossRefGoogle Scholar
  53. Khun R, Winterstein A (1934) Die Dihydroverbindung der isomeren Bixine und die Elektronen-Konfiguration der Polyene. Ber Dtsch Chem Ges 67:344–347CrossRefGoogle Scholar
  54. Klingner A, Bothe H, Wray V, Marner FJ (1995) Identification of a yellow pigment formed in maize roots upon mycorrhizal colonization. Phytochemistry 38:53–55CrossRefGoogle Scholar
  55. Kloer DP, Schulz GE (2006) Structural and biological aspects of carotenoid cleavage. Cell Mol Life Sci CMLS 63(19–20):2291–2303PubMedCrossRefGoogle Scholar
  56. Kretzschmar T, Kohlen W, Sasse J, Borghi L, Schlegel M, Bachelier JB, Reinhardt D, Bours R, Bouwmeester HJ, Martinoia E (2012) A petunia ABC protein controls strigolactone-dependent symbiotic signalling and branching. Nature 483(7389):341–344PubMedCrossRefGoogle Scholar
  57. Krinsky NI, Johnson EJ (2005) Carotenoid actions and their relation to health and disease. Mol Asp Med 26:459–516CrossRefGoogle Scholar
  58. Kuromori T et al (2010) ABC transporter At ABCG25 is involved in abscisic acid transport and responses. Proc Natl Acad Sci U S A 107:2361–2366PubMedPubMedCentralCrossRefGoogle Scholar
  59. Li N, Lin G, Kwan YW, Min ZD (1999) Simultaneous quantification of five major biologically active ingredients of saffron by high-performance liquid chromatography. J Chromatogr A 849:349–355PubMedCrossRefGoogle Scholar
  60. Li F et al (2007) Maize Y9 encodes a product essential for 15-cis-zeta- carotene isomerization. Plant Physiol 144:1181–1189PubMedPubMedCentralCrossRefGoogle Scholar
  61. Li F et al (2008) PSY3, a new member of the phytoene synthase gene family conserved in the Poaceae and regulator of abiotic stress induced root carotenogenesis. Plant Physiol 146:1333–1345PubMedPubMedCentralCrossRefGoogle Scholar
  62. Liao YH, Houghton PJ, Hoult JRS (1999) Novel and known constituents from Buddleja species and their activity against leukocyte eicosanoid generation. J Nat Prod 62(9):1241–1245PubMedCrossRefGoogle Scholar
  63. Lücker J, Schwab W, Franssen MC, Van Der Plas LH, Bouwmeester HJ, Verhoeven HA (2004) Metabolic engineering of monoterpene biosynthesis: two-step production of (+)-transisopiperitenol by tobacco. Plant J 39:135–145PubMedCrossRefGoogle Scholar
  64. Ma J, Li J, Zhao J, Zhou H, Ren F, Wang L, Gu C, Liao L, Han Y (2014) Inactivation of a gene encoding carotenoid cleavage dioxygenase (CCD4) leads to carotenoid-based yellow coloration of fruit flesh and leaf midvein in peach. Plant Mol Biol Rep 32:246–257CrossRefGoogle Scholar
  65. Maggi L, Carmona M, del Campo CP, Kanakis CD, Anastasaki E, Tarantilis PA (2009) Worldwide market screening of saffron volatile composition. J Sci Food Agric 89:1950–1954CrossRefGoogle Scholar
  66. McQuate GT, Peck SL (2001) Enhancement of attraction of alpha-ionol to male Bactrocera latifrons (Diptera: Tephritidae) by addition of a synergist, cade oil. J Econ Entomol 94:39–46PubMedCrossRefGoogle Scholar
  67. Messing SAJ, Gabelli SB, Echeverria I, Vogel JT, Guan JC, Tan BC, Klee HJ, McCarty DL, Amzel LM (2010) Structural insights into maize viviparous14, a key enzyme in the biosynthesis of the phytohormone abscisic acid. Plant Cell 22(9):2970–2980PubMedPubMedCentralCrossRefGoogle Scholar
  68. Moiseyev G, TY, Chen Y, Gentleman S, Redmond TM, Crouch RK, Ma J (2006) J Biol Chem 281:2835–2840PubMedCrossRefGoogle Scholar
  69. Moraga AR, Nohales PF, Pérez JAF, Gómez-Gómez L (2004) Glucosylation of the saffron apocarotenoid crocetin by a glucosyltransferase isolated from Crocus sativus stigmas. Planta 219(6):955–966PubMedCrossRefGoogle Scholar
  70. Namin MH, Ebrahimzadeh H, Ghareyazie B, Radjabian T, Gharavi S, Tafreshi N (2009) In vitro expression of apocarotenoid genes in Crocus sativus L. Afr J Biotechnol 8(20):5378–5382Google Scholar
  71. Oberhauser V, Voolstra O, Bangert A, Von Lintig J, Vogt JK (2008) NinaB combines carotenoid oxygenase and retinoid isomerase activity in a single polypeptide. Proc Natl Acad Sci 105(48):19000–19005PubMedPubMedCentralCrossRefGoogle Scholar
  72. Ohara K, Ujihara T, Endo T, Sato F, Yazaki K (2003) Limonene production in tobacco with Perilla limonene synthase cDNA. J Exp Bot 54:2635–2642PubMedCrossRefGoogle Scholar
  73. Park H et al (2002) Identification of the carotenoid isomerase provides insight into carotenoid biosynthesis, prolamellar body formation, and photomorphogenesis. Plant Cell 14:321–332PubMedPubMedCentralCrossRefGoogle Scholar
  74. Pasare SA, Ducreux LJM, Morris WL, Campbell R, Sharma SK, Roumeliotis E, Kohlen W, van der Krol S, Bramley PM, Roberts AG, Fraser PD, Taylor MA (2013) The role of the potato (Solanum tuberosum) CCD8 gene in stolon and tuber development. New Phytol 198:1108–1120PubMedCrossRefGoogle Scholar
  75. Pfander H, Wittwer F (1975) Carotenoid composition in safran. Helv Chim Acta 58:2233–2236PubMedCrossRefGoogle Scholar
  76. Pfister S, Meyer P, Steck A, Pfander H (1996) Isolation and structure elucidation of carotenoid-glycosyl esters in Gardenia fruits (Gardenia jasminoides Ellis) and saffron (Crocus sativus Linne). J Agric Food Chem 44:2612–2615CrossRefGoogle Scholar
  77. Poliakov E, gentleman S, Cunningham FX jr, Miller-lhli Nj, Remond TM (2005) Key role of conserved histidine in recombinant mouse beta-carotene 15 15 monooxygenase-1. JBC 280:29217–29223Google Scholar
  78. Raina BL, Agarwal SG, Bhatia AK, Gaur GS (1996) Changes in pigments and volatiles of saffron (Crocus sativus L.) during processing and storage. J Sci Food Agric 71:27–32CrossRefGoogle Scholar
  79. Rao AV, Rao LG (2007) Carotenoids and human health. Pharmacol Res 55(3):207–216PubMedCrossRefGoogle Scholar
  80. Rubio A, Rambla JL, Santaella M, Gomez MD, Orzaez D, Granell A, Gómez-Gómez L (2008) Cytosolic and plastoglobule-targeted carotenoid dioxygenases from Crocus sativus are both involved in beta-ionone release. J Biol Chem 283:24816–24825PubMedPubMedCentralCrossRefGoogle Scholar
  81. Rubio-Moraga A, Trapero A, Ahrazem O, Gómez-Gómez L (2010) Crocins transport in Crocus sativus: the long road from a senescent stigma to a newborn corm. Phytochemistry 71(13):1506–1513PubMedCrossRefGoogle Scholar
  82. Rubio-Moraga A, Ahrazem O, Pérez-Clemente RM, Gómez-Cadenas A, Yoneyama K, López-Ráez JA, Molina RV, Gómez-Gómez L (2014) Apical dominance in saffron and the involvement of the branching enzymes CCD7 and CCD8 in the control of bud sprouting. BMC Plant Biol 14(1):171PubMedPubMedCentralCrossRefGoogle Scholar
  83. Sauter A, Davies WJ, Hartung W (2001) The long-distance abscisic acid signal in the droughted plant: the fate of the hormone on its way from root to shoot. J Exp Bot 52:1991–1997PubMedCrossRefGoogle Scholar
  84. Schwartz SH, Qin XQ, Loewen MC (2004) The biochemical characterization of two carotenoid cleavage enzymes form Arabidopsis indicates that a carotenoid-derived compound inhibits lateral branching. J Biol Chem 279:46940–46945PubMedCrossRefGoogle Scholar
  85. Simkin AJ, Schwartz SH, Auldridge M, Taylor MG, Klee HJ (2004a) The tomato carotenoid cleavage dioxygenase 1 genes contribute to the formation of the flavour volatiles β-ionone, pseudoionone and geranylacetone. Plant J 40:882–892PubMedCrossRefGoogle Scholar
  86. Simkin AJ, Underwood BA, Auldridge M, Loucas HM, Shibuya K, Schmelz E, Clark DG, Klee HJ (2004b) Circadian regulation of the PhCCD1 carotenoid cleavage dioxygenase controls emission of b-ionone, a fragrance volatile of Petunia flowers. Plant Physiol 136:3504–3514PubMedPubMedCentralCrossRefGoogle Scholar
  87. Speranza G, Dada G, Manitto P, Monti D, Gramatica P (1984) 13-cis-crocin: a new crocinoid of saffron. Gazz Chim Ital 114:189–192Google Scholar
  88. Sui X, Kiser PD, Lintig JV, Palczewski K (2013) Structural basis of carotenoid cleavage: from bacteria to mammals. Arch Biochem Biophys 539(2):203–213PubMedCrossRefGoogle Scholar
  89. Tan BC, Schwartz SH, Zeevaart JAD, McCarty DR (1997) Proc Natl Acad Sci 94:12235–12240PubMedPubMedCentralCrossRefGoogle Scholar
  90. Tarantilis PA, Tsoupras G, Polissiou M (1995) Determination of saffron (Crocus sativus L.) components in crude plant extract using high-performance liquid chromatography–UV–visible photodiode-array detection-mass spectrometry. J Chromatogr A 699:107–118PubMedCrossRefGoogle Scholar
  91. Toledo-Ortiz G, Huq E, Rodríguez-Concepción M (2010) Direct regulation of phytoene synthase gene expression and carotenoid biosynthesis by phytochrome-interacting factors. PNAS 107:11626–11631PubMedPubMedCentralCrossRefGoogle Scholar
  92. Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T, Takeda-Kamiya N, Magome H, Kamiya Y, Shirasu K, Yoneyama K, Kyozuka J, Yamaguchi S (2008) Inhibition of shoot branching by new terpenoid plant hormones. Nature 455:195–200PubMedCrossRefGoogle Scholar
  93. van den Brûle S, Müller A, Fleming AJ, Smart CC (2002) The ABC transporter SpTUR2 confers resistance to the antifungal diterpene sclareol. Plant J 30:649–662PubMedCrossRefGoogle Scholar
  94. Vaughn KC, Duke SO (1981) Evaginations from the plastid envelope: a method for transfer of substances from plastid ton vacuole. Cytobios 32:89–95Google Scholar
  95. Verma RS, Middha D (2010) Analysis of saffron (Crocus sativus L. stigma) components by LC–MS–MS. Chromatographia 71(1–2):117–123CrossRefGoogle Scholar
  96. Verrier PJ et al (2008) Plant ABC proteins-a unified nomenclature and updated inventory. Trends Plant Sci 13:151–159PubMedCrossRefGoogle Scholar
  97. Vom Endt D, Kijne JW, Memelink J (2002) Transcription factors controlling plant secondary metabolism: what regulates the regulators? Phytochemistry 61(2):107–114PubMedCrossRefGoogle Scholar
  98. Walter MH, Strack D (2011) Carotenoids and their cleavage products: biosynthesis and functions. Nat Prod Rep 28:663–692PubMedCrossRefGoogle Scholar
  99. Walter MH, Fester T, Strack D (2000) Arbuscular mycorrhizal fungi induce the non-mevalonate methylerythritol phosphate pathway of isoprenoid biosynthesis correlated with accumulation of the “yellow pigment” and other apocarotenoids. Plant J 21:571–578PubMedCrossRefGoogle Scholar
  100. Walter MH, Floss DS, Strack D (2010) Apocarotenoids: hormones, mycorrhizal metabolites and aroma volatiles. Planta 232:1–17PubMedCrossRefGoogle Scholar
  101. Wang SC, Tseng TY, Huang CM, Tsai TH (2004) Gardenia herbal active constituents: applicable separation procedures. J Chromatogr B 812:193–202CrossRefGoogle Scholar
  102. Wei S, Hannoufa A, Soroka J, Xu N, Li X, Zebarjadi A, Gruber M (2011) Enhanced β-ionone emission in Arabidopsis over-expressing AtCCD1 reduces feeding damage in vivo by the crucifer flea beetle. Environ Entomol 40(6):1622–1630PubMedCrossRefGoogle Scholar
  103. Welsch R, Maass D, Voegel T, DellaPenna D, Beyer P (2007) Transcription factor RAP2.2 and its interacting partner SINAT2: stable elements in the carotenogenesis of Arabidopsis leaves. Plant Physiol 145:1073–1085PubMedPubMedCentralCrossRefGoogle Scholar
  104. Welsch R et al (2008) A third phytoene synthase is devoted to abiotic stress-induced abscisic acid formation in rice and defines functional diversification of phytoene synthase genes. Plant Physiol 147:367–380PubMedPubMedCentralCrossRefGoogle Scholar
  105. Winterstein E, Teleczky J (1922) Constituents of the saffron. I. Picrocrocin. Helv Chimica Acta 5:376–400CrossRefGoogle Scholar
  106. Yang B, Guo Z, Liu R (2005) Crocin synthesis mechanism in Crocus sativus. Tsinghua Sci Technol 10(5):567–572CrossRefGoogle Scholar
  107. Yazaki K (2005) Transporters of secondary metabolites. Curr Opin Plant Biol 8(3):301–307PubMedCrossRefGoogle Scholar
  108. Yu F et al (2007) Variegation mutants and mechanisms of chloroplast biogenesis. Plant Cell Environ 30:350–365PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2016

Authors and Affiliations

  • Shoib Ahmad Baba
    • 1
  • Nasheeman Ashraf
    • 1
  1. 1.Department of Plant biotechnologyIndian Institute of Integrative MedicineSrinagarIndia

Personalised recommendations