Skip to main content

Nonstructural and Structural Carbohydrates

  • Chapter
  • First Online:
CO2, Temperature, and Trees

Part of the book series: Ecological Research Monographs ((ECOLOGICAL))

Abstract

Effects of increased [CO2] and temperature on the concentrations of nonstructural carbohydrates (glucose, fructose, sucrose, and starch), hemicelluloses (rhamnose, o-methyl-glucuronic-acid, mannose, arabinose, galactose, and xylose), and lignin and cellulose are quantified for different tree organs. A deciduous, broad-leaved and a coniferous, evergreen needle-bearing species are presented as examples. Starch increased in sun and shade leaves. Daily courses show the great enhancement of starch but not sucrose production under elevated [CO2]. Higher temperature leads to lower starch concentrations. In contrast to starch, glucose, fructose, and sucrose are accumulated in the stem basis (Pinus sylvestris). More mannose and less arabinose are found in the stem of Pinus sylvestris at elevated [CO2]. Only galactose concentration increases after warming. All other hemicelluloses show no clear changes. Antagonism of cellulose and lignin concentration is shown in response to increased [CO2] and temperature. For instance, lignin increases with higher temperature and cellulose concentration decreases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aranda X, Augusti C, Joffre R, Fleck I (2006) Photosynthesis, growth and structural characteristics of holm oak resprouts originated from plants grown under elevated CO2. Physiol Plant 128:302–312

    Article  CAS  Google Scholar 

  • Aranjuelo I, Pintó-Marijuan M, Avice JC, Fleck I (2010) Effect of elevated CO2 on carbon partitioning in young Quercus ilex L. during resprouting. Rapid Commun Mass Spectrom 25:1527–1535

    Article  Google Scholar 

  • Atwell BJ, Henery ML, Whitehead D (2003) Sapwood development in Pinus radiata trees grown for three years at ambient and elevated carbon dioxide partial pressures. Tree Physiol 23:13–21

    Article  CAS  PubMed  Google Scholar 

  • Bader MK-F, Siegwolf R, Körner C (2010) Sustained enhancement of photosynthesis in mature deciduous forest trees after 8 years of free air CO2 enrichment. Planta 232:1115–1125

    Article  CAS  PubMed  Google Scholar 

  • Barton CVM, Jarvis PG (1999) Growth response of branches of Picea sitchensis to four years exposure to elevated atmospheric carbon dioxide concentration. New Phytol 144:233–243

    Article  Google Scholar 

  • Besford RT, Mousseau M, Matteucci G (1998) Biochemistry, physiology and biophysics of photosynthesis. In: Jarvis PG (ed) European forests and global change. The likely impacts of rising CO2 and temperature. Cambridge University Press, Cambridge, pp 29–78

    Google Scholar 

  • Blaschke L, Forstreuter M, Sheppard LJ, Leith IK, Murray MB, Polle A (2002) Lignification in beech (Fagus sylvatica) grown at elevated CO2 concentrations: interaction with nutrient availability and leaf maturation. Tree Physiol 22:469–477

    Article  CAS  PubMed  Google Scholar 

  • Davey PA, Olcer H, Zakhleniuk O, Bernacchi CJ, Calfapietra C, Long SP, Raines CA (2006) Can fast-growing plantation trees escape biochemical down-regulation of photosynthesis when grown throughout their complete production cycle in the open air under elevated carbon dioxide? Plant Cell Environ 29:1235–1244

    Article  CAS  PubMed  Google Scholar 

  • Domisch T, Finér L, Lehto T (2001) Effects of soil temperature on biomass and carbohydrate allocation in Scots pine (Pinus sylvestris) seedlings at the beginning of the growing season. Tree Physiol 21:465–472

    Article  CAS  PubMed  Google Scholar 

  • Druart N, Rodriguez-Buey M, Barro-Gafford G, Sjödin A, Bhalerao R, Hurry V (2006) Molecular targets of elevated [CO2] in leaves and stems of Populus deltoides: implications for future growth and carbon sequestration. Funct Plant Biol 33:121–131

    Article  CAS  Google Scholar 

  • Egger B, Einig W, Schlereth A, Wallenda T, Magel E, Loewe A, Hampp R (1996) Carbohydrate metabolism in one- and two-year-old spruce needles, and stem carbohydrates from three months before until three months after bud break. Physiol Plant 96:91–100

    Article  CAS  Google Scholar 

  • Ekblad A, Boström B, Holm A, Comstedt D (2005) Forest soil respiration rate and δ13C is regulated by recent above ground weather conditions. Oecologia 143:136–142

    Article  PubMed  Google Scholar 

  • Fischer C, Höll W (1992) Food reserves of Scots pine (Pinus sylvestris L.). Seasonal changes and radial distribution of carbohydrate and fat reserves in pine wood. Trees 6:147–155

    Article  Google Scholar 

  • Hobbie EA, Gregg J, Olszyk DM, Rygiewicz PT, Tingey DT (2002) Effects of climate change on labile and structural carbon in Douglas fir needles as estimated by delta C-13 and C-area measurements. Glob Change Biol 8:1072–1084

    Article  Google Scholar 

  • Hoch G, Körner C (2012) Global patterns of mobile carbon reserves in trees at the alpine treeline ecotone is under environmental control. New Phytol 195:794–802

    Article  PubMed  Google Scholar 

  • Hoch G, Richter A, Körner C (2003) Non-structural carbon compounds in temperate forest trees. Plant Cell Environ 26:1067–1081

    Article  CAS  Google Scholar 

  • Hu WJ, Harding SA, Lung J, Popko JL, Ralph J, Stokke DD, Tsai CJ, Chiang VL (1999) Repression of lignin biosynthesis promotes cellulose accumulation and growth in transgenic trees. Nat Biotechnol 17:808–812

    Article  CAS  PubMed  Google Scholar 

  • Kaakinen S, Kostiainen K, Ek F, Saranpää P, Kubiske ME, Sober J, Karnosky DF, Vapaavuori E (2004) Stem wood properties of Populus tremuloides, Betula papyrifera and Acer saccharum saplings after 3 years of treatments to elevated carbon dioxide and ozone. Glob Chang Biol 10:1513–1525

    Article  Google Scholar 

  • Keel SG, Siegwolf RT, Körner C (2006) Canopy CO2 enrichment permits tracing the fate of recently assimilated carbon in a mature deciduous forest. New Phytol 172:319–329

    Article  CAS  PubMed  Google Scholar 

  • Kilpeläinen A, Peltola H, Ryyppö A, Sauvala K, Laitinen K, Kellomäki S (2003) Wood properties of Scots pines (Pinus sylvestris) grown at elevated temperature and carbon dioxide concentration. Tree Physiol 23:889–897

    Article  PubMed  Google Scholar 

  • Kilpeläinen A, Peltola H, Ryyppö A, Kellomäki S (2005) Scots pine responses to elevated temperature and carbon dioxide concentration: growth and wood properties. Tree Physiol 25:75–83

    Article  PubMed  Google Scholar 

  • Köln T, Forstreuter M, Overdieck D (1997) Kohlenhydrat- und Stickstoffgehalte in der Rotbuche (Fagus sylvatica L.) unter erhöhten CO2-Konzentrationen. Verhandlungen der Gesellschaft für Ökologie 27:295–301 (in German, with English abstract)

    Google Scholar 

  • Kontunen-Soppela S, Lankila J, Lähdesmäki P, Laine K (2002) Response of protein and carbohydrate metabolism of Scots pine seedlings to low temperature. J Plant Physiol 159:175–180

    Article  CAS  Google Scholar 

  • Körner C (2003) Carbon limitation in trees. J Ecol 91:4–17

    Article  Google Scholar 

  • Körner C (2014) Mountain ecosystems in a changing environment. J Protect Mt Areas Res 6:71–77

    Google Scholar 

  • Lenz B, Overdieck D, Forstreuter M (1995) Atmosphärische CO2-Konzentrationserhöhung und Kohlenhydratgehalte von Buchenblättern. Verhandlungen der Gesellschaft für Ökologie 24:319–322 (in German, with English abstract)

    Google Scholar 

  • Liu L, King JS, Giardina CP (2005) Effects of elevated concentrations of atmospheric CO2 and troposheric O3 on leaf litter production and chemistry in trembling aspen and paper birch communities. Tree Physiol 25:1511–1522

    Article  CAS  PubMed  Google Scholar 

  • Luo Z-B, Calfapietra C, Liberloo M, Scarascia-Mugnozza G, Polle A (2006) Carbon partitioning to mobile and structural fractions in poplar wood under elevated CO2 (EUROFACE) and N fertilization. Glob Chang Biol 12:272–283

    Article  Google Scholar 

  • Magel E, Abdel-Latif A, Hampp R (2001) Non-structural carbohydrates and catalytic activities of sucrose metabolizing enzymes in trunks of two Juglans species and their role in heartwood formation. Holzforschung 55:135–145

    Article  CAS  Google Scholar 

  • Mandre M, Pärn H, Ots K (2006) Short-term effects of wood ash on the soil and the lignin concentration and growth of Pinus sylvestris L. For Ecol Manag 223:349–357

    Article  Google Scholar 

  • Overdieck D, Fenselau K (2009) Elevated CO2 concentration and temperature effects on the partitioning of chemical components along juvenile Scots pine stems (Pinus sylvestris L.). Trees 23:771–786

    Article  CAS  Google Scholar 

  • Overdieck D, Forstreuter M (1995) Stoffproduktion junger Buchen (Fagus sylvatica L.) bei erhöhtem CO2-Angebot. Verh Ges Ökol 24:323–330 (in German, with English abstract)

    Google Scholar 

  • Poorter H, Van Berkel Y, Baxter R, Den Hertog J, Dijkstra P, Gifford RM, Griffin KL, Roumet C, Roy J, Wong SC (1997) The effect of elevated CO2 on the chemical composition and construction costs of leaves of 27 C3 species. Plant Cell Environ 20:472–482

    Article  CAS  Google Scholar 

  • Richet N, Afif D, Tozo K, Pollet B, Maillard P, Huber F, Priault P, Banvoy J, Gross P, Dizengremel P, Lapierre C, Perré P, Cabané M (2012) Elevated CO2 and/or ozone modify lignification in the wood of poplars (Populus tremula x alba). J Exp Bot 63:4291–4301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Runion GB, Entry JA, Prior SA, Mitchell RJ, Rogers HH (1999) Tissue chemistry and carbon allocation in seedlings of Pinus palustris subjected to elevated CO2 and water stress. Tree Physiol 19:329–335

    Article  CAS  PubMed  Google Scholar 

  • Schädel C, Richter A, Blöchl A, Hoch G (2010) Hemicellulose concentration and composition in plant cell walls under extreme carbon source-sink imbalances. Physiol Plant 139:241–255

    PubMed  Google Scholar 

  • Stitt M, Krapp A (1999) The interaction between elevated carbon dioxide and nitrogen nutrition. The physiological and molecular background. Plant Cell Environ 22:583–621

    Article  CAS  Google Scholar 

  • Terziev N, Boutelje J, Larsson K (1997) Seasonal fluctuations of low-molecular-weight sugars, starch and nitrogen in sapwood of Pinus sylvestris L. Scandinavian. J For Res 12:216–224. (1999) Changes in leaf nitrogen and carbohydrates underlie temperature and CO2 acclimation of dark respiration in five boreal tree species. Plant Cell Environ 22:767–778

    Google Scholar 

  • Tjoelker MG, Reich PB, Oleksyn J (1999) Changes in leaf nitrogen and carbohydrates underlie temperature and CO2 acclimation of dark respiration in five boreal tree species. Plant Cell Environ 22:767–778

    Article  Google Scholar 

  • Walter A, Christ MM, Barron-Gafford GA, Grieve KA, Murthy R, Rascher U (2005) The effect of elevated CO2 on diel leaf growth cycle, leaf carbohydrate content and canopy growth performance of Populus deltoides. Glob Chang Biol 11:1207–1219

    Article  Google Scholar 

  • Wang J, Duan B, Zhang Y (2012) Effects of experimental warming on growth, biomass allocation, and needle chemistry of Abies faxoniana in even-aged monospecific stands. Plant Ecol 213:47–55

    Article  Google Scholar 

  • Way DA, Sage RF (2008) Elevated growth temperatures reduce the carbon gain of black spruce [Picea mariana (Mill.) B.S.P.]. Glob Chang Biol 14:624–636

    Article  Google Scholar 

  • Wu L, Chandrashekar PJ, Chiang VL (2000) A xylem-specific cellulose synthase gene from aspen (Populus tremuloides) is responsive to mechanical stress. Plant J 22:495–502

    Article  CAS  PubMed  Google Scholar 

  • Wullschleger SD, Norby RJ (1992) Respiratory cost of leaf growth and maintenance in white oak saplings exposed to atmospheric carbon dioxide enrichment. Can J For Res 22:1717–1721

    Article  CAS  Google Scholar 

  • Würth MKR, Winter K, Körner C (1998) Leaf carbohydrate responses to CO2 enrichment at the top of a tropical forest. Oecologia 116:18–25

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Overdieck, D. (2016). Nonstructural and Structural Carbohydrates. In: CO2, Temperature, and Trees. Ecological Research Monographs. Springer, Singapore. https://doi.org/10.1007/978-981-10-1860-2_6

Download citation

Publish with us

Policies and ethics