Respiration in Plant Compartments

  • Dieter Overdieck
Chapter
Part of the Ecological Research Monographs book series (ECOLOGICAL)

Abstract

Results quantifying respiration of leaves, stems, and roots from a series of measurements are presented. It is proved that there is no effect of [CO2] on dark respiration of leaves. CO2 efflux from stems is described by exponential curves in response to increasing air temperature. An example of the daily course of fine-root respiration in response to temperature is given.

Keywords

Leaf dark respiration CO2 efflux from stems Exponential temperature relationship Fine-root respiration 

References

  1. Amthor JS (1997) Plant respiratory responses to elevated CO2 partial pressure. In: Allen LH, Kirkham MB, Olzyk DM, Whitman CE (eds) Advances in carbon dioxide effects research. American Society of Agronomy, Special Publication (Proceedings of 1993 ASA Symposium, Cincinnati, OH), ASA, CSSA and SSSA, Madison, pp 35–77Google Scholar
  2. Bader MKF, Körner C (2010) No overall stimulation of soil respiration under mature deciduous forest trees after 7 years of CO2 enrichment. Glob Chang Biol 16:2830–2843CrossRefGoogle Scholar
  3. Boone RD, Nadelhoffer KJ, Canary JD, Kaye JP (1998) Roots exert a strong influence on the temperature sensitivity of soil respiration. Nature 396:570–572CrossRefGoogle Scholar
  4. Bouma T, Nielsen KL, Eissenstat DM, Lynch JP (1997) Estimating respiration of roots in soil: interactions with soil CO2, soil temperature and soil water content. Plant Soil 195:221–232CrossRefGoogle Scholar
  5. Campbell C, Atkinson L, Zaragoza-Castells J, Lundmark M, Atkin O, Hurry V (2007) Acclimation of photosynthesis and respiration is asynchronous in response to changes in temperature regardless of plant functional group. New Phytol 176:375–389CrossRefPubMedGoogle Scholar
  6. Carey EV, DeLucia EH, Ball JT (1996) Stem maintenance and construction respiration in Pinus ponderosa grown in different concentrations of atmospheric CO2. Tree Physiol 16:125–130CrossRefPubMedGoogle Scholar
  7. Cavaleri MA, Oberbauer SF, Ryan MG (2008) Foliar and ecosystem respiration in an old growth tropical rain forest. Plant Cell Environ 31:473–483CrossRefPubMedGoogle Scholar
  8. Ceulemans R (1997) Direct impacts of CO2 and temperature on physiological processes in trees. In: Mohren GMJ et al (eds) Impacts of global change on tree physiology and forest ecosystems. Kluwer Academic Publishers, Dordrecht, pp 3–14CrossRefGoogle Scholar
  9. Ceulemans R, Mousseau M (1994) Effects of elevated atmospheric CO2 on woody plants. Tansley Review No. 71. New Phytol 127:425–446CrossRefGoogle Scholar
  10. Ceulemans R, Taylor G, Bosac C, Wilkins D, Besford R (1997) Photosynthetic acclimation to elevated CO2 in poplar grown in glasshouse cabinets or in open top chambers depends on duration of exposure. J Exp Bot 48:1681–1689CrossRefGoogle Scholar
  11. Curtis PS, Wang X (1998) A meta-analysis of elevated CO2 effects on woody plant mass, form, and physiology. Oecologia 113:299–313CrossRefGoogle Scholar
  12. Curtis PS, Vogel CS, Pregnitzer KS, Zak DR, Terri JA (1995) Interacting effects of soil fertility and atmospheric CO2 on leaf area growth and carbon gain physiology in Populus euramericana (Dode) Guinier. New Phytol 129:253–263CrossRefGoogle Scholar
  13. Damesin C (2003) Respiration and photosynthesis characteristics of current-year stems of Fagus sylvatica: from the seasonal pattern to an estimation over the years. New Phytol 15:465–475CrossRefGoogle Scholar
  14. Dawes MA, Zweifel R, Dawes N, Rixen C, Hagedorn F (2014) CO2 enrichment alters diurnal stem radius fluctuations of 36-yr-old Larix decidua growing at the alpine tree line. New Phytol 202:1237–1248CrossRefPubMedGoogle Scholar
  15. Dieleman WIJ, Vicca S, Dijkstra FA, Hagedorn F, Hovenden MJ, Larsen K, Morgan JA, Volder A, Beier C, Dukes JS, King J, Leuziger S, Linder S, Luo Y, Oren R, De Angelis P, Tingey D, Hoosbeek MR, Janssens IA (2012) Simple additive effects are rare: a quantitative review of plant biomass and soil process responses to combined manipulations of CO2 and temperature. Glob Change Biol 18:2681–2693CrossRefGoogle Scholar
  16. Drake JE, Stoy PC, Jackson RB, DeLucia EH (2008) Fine-root respiration in a loblolly pine (Pinus taeda L.) forest exposed to elevated CO2 and N fertilization. Plant Cell Environ 31:1663–1672CrossRefPubMedGoogle Scholar
  17. Epron D, Liozon R, Mousseau M (1996) Effects of elevated CO2 concentration on leaf characteristics and photosynthesis capacity of beech (Fagus sylvatica) during the growing season. Tree Physiol 16:425–432CrossRefPubMedGoogle Scholar
  18. Epron D, Le Dantec V, Dufrène E, Granier A (2001) Seasonal dynamics of soil carbon dioxide efflux and simulated rhizosphere respiration in a beech forest. Tree Physiol 21:145–152CrossRefPubMedGoogle Scholar
  19. Etzold S, Zweifel R, Ruehr NK, Eugster W, Buchmann N (2012) Long-term stem CO2 concentration measurements in Norway spruce in relation to biotic and abiotic factors. New Phytol 197:1173–1184CrossRefGoogle Scholar
  20. Forstreuter M (2001) Auswirkungen globaler Klimaänderungen auf das Wachstum und den Gaswechsel (CO2/H2O) von Rotbuchenbeständen (Fagus sylvatica L.). Habilitationsschrift (in German with English abstract). TU-Berlin, Gerrmany, pp 115–120, 180–183Google Scholar
  21. George K, Norby RJ, Hamilton JG, DeLucia EH (2003) Fine-root respiration in loblolly pine and sweetgum forest growing in elevated CO2. New Phytol 160:511–522CrossRefGoogle Scholar
  22. Gonzalez-Meler MA, Siedow JN (1999) Inhibition of respiratory enzymes by elevated CO2: does it matter at the intact tissue and whole plant levels? Tree Physiol 19:253–259CrossRefPubMedGoogle Scholar
  23. Gonzalez-Meler MA, Tavena L, Trueman RJ (2004) Plant respiration and elevated CO2 concentration: cellular responses and global significance. Ann Bot 94:647–656CrossRefPubMedPubMedCentralGoogle Scholar
  24. Hagihara A, Hozumi K (1991) Respiration. In: Raghavendra AS (ed) Physiology of trees. Wiley, New York, pp 87–110Google Scholar
  25. Jahnke S (2001) Atmospheric CO2 concentration does not directly affect leaf respiration in bean or poplar. Plant Cell Environ 24:1139–1151CrossRefGoogle Scholar
  26. Karberg NJ, Pregnitzer KS, King JS, Friend AL, Wood JR (2005) Soil carbon dioxide partial pressure and dissolved inorganic carbonate chemistry under elevated carbon dioxide and ozone. Oecologia 142:296–306CrossRefPubMedGoogle Scholar
  27. Korol RL, Running SW, Milner KS, Hunt ERJ (1991) Testing a mechanistic carbon balance model against observed tree growth. Can J For Res 21:1098–1105CrossRefGoogle Scholar
  28. Lambers H, Szaniawski RK, de Vesser R (1983) Respiration for growth, maintenance and ion uptake. An evaluation of concepts, methods, values, and their significance. Physiol Plant 58:556–563CrossRefGoogle Scholar
  29. Larigauderie A, Körner C (1995) Acclimation of leaf dark respiration to temperature in alpine and lowland plant species. Ann Bot 76:245–252CrossRefGoogle Scholar
  30. Liberloo M, DeAngelis P, Ceulemans R (2008) Stem CO2 efflux of a Populus nigra stand: effects of elevated CO2 fertilization, and shoot size. Biol Plant 52:299–306CrossRefGoogle Scholar
  31. Mata C, Scheurwater I, Martins-Laucao MA, Lambers H (1996) Root respiration, growth and nitrogen uptake of Quercus suber seedlings. Plant Physiol Biochem 34:727–734Google Scholar
  32. McGuire MA, Teskey RO (2004) Estimating stem respiration in trees by a mass balance approach that accounts for internal and external fluxes of CO2. Tree Physiol 24:571–578CrossRefPubMedGoogle Scholar
  33. McGuire MA, Cerasoli S, Teskey RO (2007) CO2 fluxes and respiration of branch segments of sycamore (Platanus occidentalis L.) examined at different sap velocities, branch diameters, and temperatures. J Exp Bot 58:2159–2168CrossRefPubMedGoogle Scholar
  34. Moore DJP, Gonzalez MA, Tavena L, Pippen JS, Kim HS, DeLucia EH (2008) The effect of carbon dioxide enrichment on apparent stem respiration from Pinus taeda L. is confounded by high levels of soil carbon dioxide. Oecologia 158:1–10CrossRefPubMedGoogle Scholar
  35. Pfanz H, Aschan G, Langenfeld-Heyser R, Wittmann C, Loose M (2002) Ecology and ecophysiology of tree stems: corticular and wood photosynthesis. Naturwissenschaften 89:147–162CrossRefPubMedGoogle Scholar
  36. Saveyn A, Steppe K, McGuire MA, Lemeur R, Teskey RO (2008) Stem respiration and carbon dioxide efflux of young Populus deltoides trees in relation to temperature and xylem carbon dioxide concentration. Oecologia 154:637–649CrossRefPubMedGoogle Scholar
  37. Saveyn A, Steppe K, Ubierna N, Dawson TE (2010) Woody tissue photosynthesis and its contribution to trunk growth and bud development in young plants. Plant Cell Environ 33:1949–1958CrossRefPubMedGoogle Scholar
  38. Sprugel DG, Benecke U (1991) Measuring woody-tissue respiration and photosynthesis. In: Lassoie JP, Hinckley TM (eds) Techniques and approaches in forest tree ecophysiology. CRC Press, Boca Raton, pp 329–355Google Scholar
  39. Strassemeyer J (2002) Gaswechsel (CO2/H2O) von Eichenbeständen (Quercus robur L.) unter erhöhter atmosphärischer CO2-Konzentration. Dissertation, TU-Berlin, Germany, pp 98–99, 120–123 (in German, with English abstract)Google Scholar
  40. Sulzman EW, Brant JB, Bowden RD, Lajtha K (2005) Contribution of aboveground litter, belowground litter, and rhizosphere respiration to total soil CO2 efflux in an old growth coniferous forest. Biogeochemistry 73:231–256CrossRefGoogle Scholar
  41. Teskey RO (1995) A field sudy of the effect of elevated CO2 on carbon assimilation, stomatal conductance and leaf and branch growth of Pinus taeda trees. Plant Cell Environ 18:565–573CrossRefGoogle Scholar
  42. Tjoelker MG, Oleksyn J, Reich PB (2001) Modelling respiration of vegetation: evidence for a general temperature-dependent Q10. Glob Chang Biol 7:223–230CrossRefGoogle Scholar
  43. Ubierna N, Kumar AS, Cernusak LA, Pangle RE, Gag PJ, Marshall JD (2009) Storage and transportation have negligible effects on δ13C of stem CO2 efflux in large conifer trees. Tree Physiol 29:1563–1574CrossRefPubMedGoogle Scholar
  44. Vogel CS, Curtis PS (1995) Leaf gas exchange and nitrogen dynamics of N2-fixing field-grown Alnus glutinosa under elevated atmospheric CO2 concentration. Glob Chang Biol 1:55–61CrossRefGoogle Scholar
  45. Wang Y-P, Rey A, Jarvis PG (1998) Carbon balance of young birch trees grown in ambient and elevated atmospheric CO2 concentrations. Glob Chang Biol 4:797–807CrossRefGoogle Scholar
  46. Way DA, Sage RF (2008) Elevated growth temperatures reduce the carbon gain of black spruce [Picea mariana (Mill.) B.S.P.]. Glob Change Biol 14:624–636CrossRefGoogle Scholar
  47. Wittmann C, Pfanz H (2007) Temperature dependency of bark photosynthesis in beech (Fagus sylvatica L.) and birch (Betula pendula Roth.) trees. J Exp Bot 58:4293–4306CrossRefPubMedGoogle Scholar
  48. Zaragoza-Castells J, Sánchez-Gómez D, Vallarades F, Hurry V, Atkin OK (2007) Does growth irradiance affect temperature dependence and thermal acclimation of leaf respiration? Insights from a Mediterranean tree with long-lived leaves. Plant Cell Environ 30:820–833CrossRefPubMedGoogle Scholar
  49. Zha TS, Kellomäki S, Wang KY, Ryyppö A (2005) Respiratory responses of Scots pine stems to 5 years of exposure to elevated CO2 concentration and temperature. Tree Physiol 25:49–56CrossRefPubMedGoogle Scholar
  50. Zhou YM, Han S, Zhang HS, Xin LH, Zheng JQ (2007) Response of needle dark respiration of Pinus koraiensis and Pinus sylvestriformis to elevated CO2 concentration for four growing seasons’ exposure. Sci China D Earth Sci 50:613–619CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2016

Authors and Affiliations

  • Dieter Overdieck
    • 1
  1. 1.Institute of Ecology, Ecology of Woody PlantsTechnical University of BerlinBerlinGermany

Personalised recommendations