Skip to main content

Respiration in Plant Compartments

  • Chapter
  • First Online:
CO2, Temperature, and Trees

Part of the book series: Ecological Research Monographs ((ECOLOGICAL))

  • 887 Accesses

Abstract

Results quantifying respiration of leaves, stems, and roots from a series of measurements are presented. It is proved that there is no effect of [CO2] on dark respiration of leaves. CO2 efflux from stems is described by exponential curves in response to increasing air temperature. An example of the daily course of fine-root respiration in response to temperature is given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amthor JS (1997) Plant respiratory responses to elevated CO2 partial pressure. In: Allen LH, Kirkham MB, Olzyk DM, Whitman CE (eds) Advances in carbon dioxide effects research. American Society of Agronomy, Special Publication (Proceedings of 1993 ASA Symposium, Cincinnati, OH), ASA, CSSA and SSSA, Madison, pp 35–77

    Google Scholar 

  • Bader MKF, Körner C (2010) No overall stimulation of soil respiration under mature deciduous forest trees after 7 years of CO2 enrichment. Glob Chang Biol 16:2830–2843

    Article  Google Scholar 

  • Boone RD, Nadelhoffer KJ, Canary JD, Kaye JP (1998) Roots exert a strong influence on the temperature sensitivity of soil respiration. Nature 396:570–572

    Article  CAS  Google Scholar 

  • Bouma T, Nielsen KL, Eissenstat DM, Lynch JP (1997) Estimating respiration of roots in soil: interactions with soil CO2, soil temperature and soil water content. Plant Soil 195:221–232

    Article  CAS  Google Scholar 

  • Campbell C, Atkinson L, Zaragoza-Castells J, Lundmark M, Atkin O, Hurry V (2007) Acclimation of photosynthesis and respiration is asynchronous in response to changes in temperature regardless of plant functional group. New Phytol 176:375–389

    Article  CAS  PubMed  Google Scholar 

  • Carey EV, DeLucia EH, Ball JT (1996) Stem maintenance and construction respiration in Pinus ponderosa grown in different concentrations of atmospheric CO2. Tree Physiol 16:125–130

    Article  PubMed  Google Scholar 

  • Cavaleri MA, Oberbauer SF, Ryan MG (2008) Foliar and ecosystem respiration in an old growth tropical rain forest. Plant Cell Environ 31:473–483

    Article  CAS  PubMed  Google Scholar 

  • Ceulemans R (1997) Direct impacts of CO2 and temperature on physiological processes in trees. In: Mohren GMJ et al (eds) Impacts of global change on tree physiology and forest ecosystems. Kluwer Academic Publishers, Dordrecht, pp 3–14

    Chapter  Google Scholar 

  • Ceulemans R, Mousseau M (1994) Effects of elevated atmospheric CO2 on woody plants. Tansley Review No. 71. New Phytol 127:425–446

    Article  Google Scholar 

  • Ceulemans R, Taylor G, Bosac C, Wilkins D, Besford R (1997) Photosynthetic acclimation to elevated CO2 in poplar grown in glasshouse cabinets or in open top chambers depends on duration of exposure. J Exp Bot 48:1681–1689

    Article  CAS  Google Scholar 

  • Curtis PS, Wang X (1998) A meta-analysis of elevated CO2 effects on woody plant mass, form, and physiology. Oecologia 113:299–313

    Article  Google Scholar 

  • Curtis PS, Vogel CS, Pregnitzer KS, Zak DR, Terri JA (1995) Interacting effects of soil fertility and atmospheric CO2 on leaf area growth and carbon gain physiology in Populus euramericana (Dode) Guinier. New Phytol 129:253–263

    Article  Google Scholar 

  • Damesin C (2003) Respiration and photosynthesis characteristics of current-year stems of Fagus sylvatica: from the seasonal pattern to an estimation over the years. New Phytol 15:465–475

    Article  Google Scholar 

  • Dawes MA, Zweifel R, Dawes N, Rixen C, Hagedorn F (2014) CO2 enrichment alters diurnal stem radius fluctuations of 36-yr-old Larix decidua growing at the alpine tree line. New Phytol 202:1237–1248

    Article  CAS  PubMed  Google Scholar 

  • Dieleman WIJ, Vicca S, Dijkstra FA, Hagedorn F, Hovenden MJ, Larsen K, Morgan JA, Volder A, Beier C, Dukes JS, King J, Leuziger S, Linder S, Luo Y, Oren R, De Angelis P, Tingey D, Hoosbeek MR, Janssens IA (2012) Simple additive effects are rare: a quantitative review of plant biomass and soil process responses to combined manipulations of CO2 and temperature. Glob Change Biol 18:2681–2693

    Article  Google Scholar 

  • Drake JE, Stoy PC, Jackson RB, DeLucia EH (2008) Fine-root respiration in a loblolly pine (Pinus taeda L.) forest exposed to elevated CO2 and N fertilization. Plant Cell Environ 31:1663–1672

    Article  CAS  PubMed  Google Scholar 

  • Epron D, Liozon R, Mousseau M (1996) Effects of elevated CO2 concentration on leaf characteristics and photosynthesis capacity of beech (Fagus sylvatica) during the growing season. Tree Physiol 16:425–432

    Article  CAS  PubMed  Google Scholar 

  • Epron D, Le Dantec V, Dufrène E, Granier A (2001) Seasonal dynamics of soil carbon dioxide efflux and simulated rhizosphere respiration in a beech forest. Tree Physiol 21:145–152

    Article  CAS  PubMed  Google Scholar 

  • Etzold S, Zweifel R, Ruehr NK, Eugster W, Buchmann N (2012) Long-term stem CO2 concentration measurements in Norway spruce in relation to biotic and abiotic factors. New Phytol 197:1173–1184

    Article  Google Scholar 

  • Forstreuter M (2001) Auswirkungen globaler Klimaänderungen auf das Wachstum und den Gaswechsel (CO2/H2O) von Rotbuchenbeständen (Fagus sylvatica L.). Habilitationsschrift (in German with English abstract). TU-Berlin, Gerrmany, pp 115–120, 180–183

    Google Scholar 

  • George K, Norby RJ, Hamilton JG, DeLucia EH (2003) Fine-root respiration in loblolly pine and sweetgum forest growing in elevated CO2. New Phytol 160:511–522

    Article  Google Scholar 

  • Gonzalez-Meler MA, Siedow JN (1999) Inhibition of respiratory enzymes by elevated CO2: does it matter at the intact tissue and whole plant levels? Tree Physiol 19:253–259

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Meler MA, Tavena L, Trueman RJ (2004) Plant respiration and elevated CO2 concentration: cellular responses and global significance. Ann Bot 94:647–656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hagihara A, Hozumi K (1991) Respiration. In: Raghavendra AS (ed) Physiology of trees. Wiley, New York, pp 87–110

    Google Scholar 

  • Jahnke S (2001) Atmospheric CO2 concentration does not directly affect leaf respiration in bean or poplar. Plant Cell Environ 24:1139–1151

    Article  CAS  Google Scholar 

  • Karberg NJ, Pregnitzer KS, King JS, Friend AL, Wood JR (2005) Soil carbon dioxide partial pressure and dissolved inorganic carbonate chemistry under elevated carbon dioxide and ozone. Oecologia 142:296–306

    Article  CAS  PubMed  Google Scholar 

  • Korol RL, Running SW, Milner KS, Hunt ERJ (1991) Testing a mechanistic carbon balance model against observed tree growth. Can J For Res 21:1098–1105

    Article  Google Scholar 

  • Lambers H, Szaniawski RK, de Vesser R (1983) Respiration for growth, maintenance and ion uptake. An evaluation of concepts, methods, values, and their significance. Physiol Plant 58:556–563

    Article  CAS  Google Scholar 

  • Larigauderie A, Körner C (1995) Acclimation of leaf dark respiration to temperature in alpine and lowland plant species. Ann Bot 76:245–252

    Article  Google Scholar 

  • Liberloo M, DeAngelis P, Ceulemans R (2008) Stem CO2 efflux of a Populus nigra stand: effects of elevated CO2 fertilization, and shoot size. Biol Plant 52:299–306

    Article  CAS  Google Scholar 

  • Mata C, Scheurwater I, Martins-Laucao MA, Lambers H (1996) Root respiration, growth and nitrogen uptake of Quercus suber seedlings. Plant Physiol Biochem 34:727–734

    CAS  Google Scholar 

  • McGuire MA, Teskey RO (2004) Estimating stem respiration in trees by a mass balance approach that accounts for internal and external fluxes of CO2. Tree Physiol 24:571–578

    Article  CAS  PubMed  Google Scholar 

  • McGuire MA, Cerasoli S, Teskey RO (2007) CO2 fluxes and respiration of branch segments of sycamore (Platanus occidentalis L.) examined at different sap velocities, branch diameters, and temperatures. J Exp Bot 58:2159–2168

    Article  CAS  PubMed  Google Scholar 

  • Moore DJP, Gonzalez MA, Tavena L, Pippen JS, Kim HS, DeLucia EH (2008) The effect of carbon dioxide enrichment on apparent stem respiration from Pinus taeda L. is confounded by high levels of soil carbon dioxide. Oecologia 158:1–10

    Article  PubMed  Google Scholar 

  • Pfanz H, Aschan G, Langenfeld-Heyser R, Wittmann C, Loose M (2002) Ecology and ecophysiology of tree stems: corticular and wood photosynthesis. Naturwissenschaften 89:147–162

    Article  CAS  PubMed  Google Scholar 

  • Saveyn A, Steppe K, McGuire MA, Lemeur R, Teskey RO (2008) Stem respiration and carbon dioxide efflux of young Populus deltoides trees in relation to temperature and xylem carbon dioxide concentration. Oecologia 154:637–649

    Article  PubMed  Google Scholar 

  • Saveyn A, Steppe K, Ubierna N, Dawson TE (2010) Woody tissue photosynthesis and its contribution to trunk growth and bud development in young plants. Plant Cell Environ 33:1949–1958

    Article  CAS  PubMed  Google Scholar 

  • Sprugel DG, Benecke U (1991) Measuring woody-tissue respiration and photosynthesis. In: Lassoie JP, Hinckley TM (eds) Techniques and approaches in forest tree ecophysiology. CRC Press, Boca Raton, pp 329–355

    Google Scholar 

  • Strassemeyer J (2002) Gaswechsel (CO2/H2O) von Eichenbeständen (Quercus robur L.) unter erhöhter atmosphärischer CO2-Konzentration. Dissertation, TU-Berlin, Germany, pp 98–99, 120–123 (in German, with English abstract)

    Google Scholar 

  • Sulzman EW, Brant JB, Bowden RD, Lajtha K (2005) Contribution of aboveground litter, belowground litter, and rhizosphere respiration to total soil CO2 efflux in an old growth coniferous forest. Biogeochemistry 73:231–256

    Article  Google Scholar 

  • Teskey RO (1995) A field sudy of the effect of elevated CO2 on carbon assimilation, stomatal conductance and leaf and branch growth of Pinus taeda trees. Plant Cell Environ 18:565–573

    Article  Google Scholar 

  • Tjoelker MG, Oleksyn J, Reich PB (2001) Modelling respiration of vegetation: evidence for a general temperature-dependent Q10. Glob Chang Biol 7:223–230

    Article  Google Scholar 

  • Ubierna N, Kumar AS, Cernusak LA, Pangle RE, Gag PJ, Marshall JD (2009) Storage and transportation have negligible effects on δ13C of stem CO2 efflux in large conifer trees. Tree Physiol 29:1563–1574

    Article  CAS  PubMed  Google Scholar 

  • Vogel CS, Curtis PS (1995) Leaf gas exchange and nitrogen dynamics of N2-fixing field-grown Alnus glutinosa under elevated atmospheric CO2 concentration. Glob Chang Biol 1:55–61

    Article  Google Scholar 

  • Wang Y-P, Rey A, Jarvis PG (1998) Carbon balance of young birch trees grown in ambient and elevated atmospheric CO2 concentrations. Glob Chang Biol 4:797–807

    Article  Google Scholar 

  • Way DA, Sage RF (2008) Elevated growth temperatures reduce the carbon gain of black spruce [Picea mariana (Mill.) B.S.P.]. Glob Change Biol 14:624–636

    Article  Google Scholar 

  • Wittmann C, Pfanz H (2007) Temperature dependency of bark photosynthesis in beech (Fagus sylvatica L.) and birch (Betula pendula Roth.) trees. J Exp Bot 58:4293–4306

    Article  CAS  PubMed  Google Scholar 

  • Zaragoza-Castells J, Sánchez-Gómez D, Vallarades F, Hurry V, Atkin OK (2007) Does growth irradiance affect temperature dependence and thermal acclimation of leaf respiration? Insights from a Mediterranean tree with long-lived leaves. Plant Cell Environ 30:820–833

    Article  CAS  PubMed  Google Scholar 

  • Zha TS, Kellomäki S, Wang KY, Ryyppö A (2005) Respiratory responses of Scots pine stems to 5 years of exposure to elevated CO2 concentration and temperature. Tree Physiol 25:49–56

    Article  PubMed  Google Scholar 

  • Zhou YM, Han S, Zhang HS, Xin LH, Zheng JQ (2007) Response of needle dark respiration of Pinus koraiensis and Pinus sylvestriformis to elevated CO2 concentration for four growing seasons’ exposure. Sci China D Earth Sci 50:613–619

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Overdieck, D. (2016). Respiration in Plant Compartments. In: CO2, Temperature, and Trees. Ecological Research Monographs. Springer, Singapore. https://doi.org/10.1007/978-981-10-1860-2_4

Download citation

Publish with us

Policies and ethics