Skip to main content

CO2 Net Assimilation of Leaves

  • Chapter
  • First Online:
  • 919 Accesses

Part of the book series: Ecological Research Monographs ((ECOLOGICAL))

Abstract

Dependencies of CO2 net assimilation rates of leaves on the variables [CO2], light (photosynthetic photon flux density), air temperature, and nitrogen are quantified by means of examples. Factors that enhance the effects of increasing [CO2] are compiled. A new function describes the three-dimensional relationship among [CO2], temperature, and CO2 net assimilation of leaves. Partial acclimation of CO2 net assimilation (photosynthesis) to increasing [CO2] is proved and discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ainsworth EA, Rogers A (2007) The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions. Plant Cell Environ 30:258–270

    Article  CAS  PubMed  Google Scholar 

  • Ambebe TF, Dang Q-L (2009) Low moisture availability inhibits the enhancing effect of increased soil temperature on net photosynthesis of white birch (Betula papyrifera) seedlings grown under ambient and elevated carbon dioxide concentrations. Tree Physiol 29:1341–1348

    Article  CAS  PubMed  Google Scholar 

  • Aranda X, Augusti C, Joffre R, Fleck I (2006) Photosynthesis, growth and structural characteristics of holm oak resprouts originated from plants grown under elevated CO2. Physiol Plant 128:302–312

    Article  CAS  Google Scholar 

  • Bader MK-F, Siegwolf R, Körner C (2010) Sustained enhancement of photosynthesis in mature deciduous forest trees after 8 years of free air CO2 enrichment. Planta 232:1115–1125

    Article  CAS  PubMed  Google Scholar 

  • Barker DH, Loveys BR, Egerton JJG, Gorton H, Williams WE, Ball MC (2005) CO2 enrichment predisposes foliage of a eucalypt to freezing injury and reduces spring growth. Plant Cell Environ 28:1506–1515

    Article  Google Scholar 

  • Bauerle WL, Bowden JD, Wang GG (2007) The influence of temperature on within–canopy acclimation and variation in leaf photosynthesis: spatial acclimation to microclimate gradients among climatically divergent Acer rubrum L. genotypes. J Exp Bot 58:3285–3298

    Article  CAS  PubMed  Google Scholar 

  • Besford RT, Mousseau M, Matteucci G (1998) Biochemistry, physiology and biophysics of photosynthesis. In: Jarvis PG (ed) European forests and global change. The likely impacts of rising CO2 and temperature. Cambridge University Press, Cambridge, pp 29–78

    Google Scholar 

  • Cernusak LA, Winter K, Martinez C, Correa E, Aranda J, Garcia M, Jaramillo C, Turner BL (2011) Responses of legume versus nonlegume tropical tree seedlings to elevated CO2 concentration. Plant Physiol 157:372–385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ceulemans R, Taylor G, Bosac C, Wilkins D, Besford R (1997) Photosynthetic acclimation to elevated CO2 in poplar grown in glasshouse cabinets or in open top chambers depends on duration of exposure. J Exp Bot 48:1681–1689

    Article  CAS  Google Scholar 

  • Curtis PS, Wang X (1998) A meta-analysis of elevated CO2 effects on woody plant mass, form, and physiology. Oecologia 113:299–313

    Article  Google Scholar 

  • DeLucia EH, Thomas RB (2000) Photosynthetic responses to CO2 enrichment of four hardwood species in a forest understory. Oecologia 122:11–19

    Article  Google Scholar 

  • Dreyer E, LeRoux X, Montpied P, Daudet FA, Masson F (2001) Temperature response of leaf photosynthetic capacity in seedlings from seven temperate tree species. Tree Physiol 21:223–232

    Article  CAS  PubMed  Google Scholar 

  • Eamus D, Jarvis PG (1989) The direct effects of increase in the global atmospheric CO2 concentration on natural and commercial temperate trees and forests. Adv Ecol Res 19:1–55

    Article  Google Scholar 

  • Eguchi N, Karatsu K, Ueda T, Funada R, Takagi K, Hiura T, Sasa K, Koike T (2008) Photosynthetic responses of birch and alder saplings grown in a free air CO2 enrichment system in Northern Japan. Trees 22:437–447

    Article  CAS  Google Scholar 

  • Ellsworth DS, LaRoche J, Hendrey GR (1998) Elevated CO2 in a prototype free air CO2 enrichment facility affects photosynthetic capacity nitrogen relations in a maturing pine forest. Brookhaven National Labs, Upton, Long Island, New York, USA Report BNL 52545, pp 1–45

    Google Scholar 

  • Evans JR (1989) Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia 78:9–19

    Article  Google Scholar 

  • Farquhar GD, von Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78–90

    Article  CAS  PubMed  Google Scholar 

  • Field C, Mooney HA (1986) The photosynthesis-nitrogen relationship in wild plants. In: Givinsh TJ (ed) On the economy of form and function. Cambridge University Press, Cambridge, pp 25–55

    Google Scholar 

  • Forstreuter M (2001) Auswirkungen globaler Klimaänderungen auf das Wachstum und den Gaswechsel (CO2/H2O) von Rotbuchenbeständen (Fagus sylvatica L.). Habilitationsschrift (in German with English abstract), TU-Berlin, Germany, pp 115–120, 180–183

    Google Scholar 

  • Freeman M (1998) Leaf gas exchange in mature beech (Fagus sylvatica L.) exposed to longterm elevated CO2 in branch bags. Ph.D. thesis, Royal Veterinary and Agricultural University, Denmark

    Google Scholar 

  • Griffin KL, Tissue DT, Turnbull MH, Whitehead D (2000) The onset of photosynthetic acclimation to elevated CO2 partial pressure in field–grown Pinus radiata D. Don. after 4 years. Plant Cell Environ 23:1089–1098

    Article  Google Scholar 

  • Gunderson CA, Norby RJ, Wullschleger SD (1993) Foliar gas exchange responses of two deciduous hardwoods during 3 years of growth in elevated CO2: No loss of photosynthetic enhancement. Plant Cell Environ 16:797–807

    Article  CAS  Google Scholar 

  • Hättenschwiler S (2001) Tree seedling growth in natural deep shade: functional traits related to interspecific variation in response to elevated CO2. Oecologia 129:31–42

    Article  Google Scholar 

  • Herrick JD, Thomas RB (2001) No photosynthetic down-regulation in sweetgum trees (Liquidambar styraciflua L.) after three years of CO2 enrichment at the Duke Forest FACE experiment. Plant Cell Environ 24:53–69

    Article  CAS  Google Scholar 

  • Hollinger DY (1996) Optimality and nitrogen allocation in a tree canopy. Tree Physiol 16:627–634

    Article  PubMed  Google Scholar 

  • Idso SB, Kimball BA (1993) Effects of atmospheric carbon dioxide enrichment on net photosynthesis and dark respiration rates of three Australian tree species. J Plant Physiol 141:166–171

    Article  CAS  Google Scholar 

  • Jach ME, Ceulemans R (2000) Effects of season, needle age and elevated atmospheric CO2 on photosynthesis in Scots pine (Pinus sylvestris). Tree Physiol 20:145–157

    Article  CAS  PubMed  Google Scholar 

  • Kellomäki S, Wang K-Y (1997) Photosynthetic responses of Scots pine to elevated CO2 and nitrogen supply: results of a branch-in-bag experiment. Tree Physiol 17:231–240

    Article  PubMed  Google Scholar 

  • Kerstiens G (2001) Meta-analysis of the interaction between shade-tolerance, light environment and growth response of woody species to elevated CO2. Acta Oecol 22:61–69

    Article  Google Scholar 

  • Körner C (1995) Towards a better experimental basis for upscaling plant responses to elevated CO2 and climate warming. Plant Cell Environ 18:1101–1110

    Article  Google Scholar 

  • Kositsup B, Montpied P, Kasemsap P, Thaler P, Améglio T, Dreyer E (2009) Potosynthetic capacity and temperature responses of photosynthesis of rubber trees (Hevea brasiliensis Müll. Arg.) acclimate to changes in ambient temperatures. Trees 23:357–365

    Article  CAS  Google Scholar 

  • Kubiske ME, Pregitzer KS (1996) Effects of elevated CO2 and light availability on the photosynthetic light response of trees of contrasting shade tolerance. Tree Physiol 16:351–358

    Article  PubMed  Google Scholar 

  • Küppers M, Häder DP (1999) Methodik der Photosyntheseforschung – Messung und Interpretation des CO2-Gasaustausches von intakten Blättern. In: Häder DP (ed) Photosynthese. Thieme, Stuttgart, pp 21–47 (in German)

    Google Scholar 

  • Lemon ER (ed) (1983) CO2 and plants. AAS Selected Symposium 84, Westview Press, Boulder, pp 1–280

    Google Scholar 

  • Leverenz JW (1987) Chlorophyll content and the light response curve of shade–adapted conifer needles. Physiol Plant 71:20–29

    Article  CAS  Google Scholar 

  • Lewis JD, Lucash M, Olszyk DM, Tingey DT (2001) Seasonal patterns of photosynthesis in Douglas-fir seedlings during the third and fourth year of exposure to elevated carbon dioxide and temperature. Plant Cell Environ 24:539–548

    Article  CAS  Google Scholar 

  • Lloyd J, Farquhar GD (2008) Effects of rising temperatures and [CO2] on the physiology of tropical forest trees. Philos Trans R Soc 363:1811–1817

    Article  CAS  Google Scholar 

  • Long SP (1991) Modification of the response of photosynthetic productivity to rising temperature by atmospheric CO2 concentrations: has its importance been underestimated? Plant Cell Environ 14:729–739

    Article  CAS  Google Scholar 

  • Long SP, Drake BG (1991) Effects of the long-term elevation of CO2 concentration in the field on quantum yield of photosynthesis of the C3 sedge Scirpus olneyi. Plant Physiol 96:221–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loveys BR, Egerton JJG, Ball MC (2006) Higher daytime temperatures contribute to lower freeze tolerance under elevated CO2. Plant Cell Environ 29:1077–1086

    Article  CAS  PubMed  Google Scholar 

  • Medlyn BE, Badeck FW, de Pury DG, Barton CV, Broadmeadow M, Ceulemans R, de Angelis P, Forstreuter M, Jach ME, Kellomäki S, Laitat E, Marek MV, Philippot S, Rey A, Strassemeyer J, Laitinen K, Jarvis PG (1999) Effects of elevated [CO2] on photosynthesis in European forest species: a meta-analysis of model-parameters. Plant Cell Environ 22:1475–1495

    Article  CAS  Google Scholar 

  • Morison JIL, Lawlor DW (1999) Interactions between increasing CO2 concentration and temperature on plant growth. Plant Cell Environ 22:659–682

    Article  CAS  Google Scholar 

  • Norby RJ, Wullschleger SD, Gunderson CA, Johnson DW, Ceulemans R (1999) Tree responses to rising CO2 in field experiments: implications for the future forest. Plant Cell Environ 22:683–714

    Article  CAS  Google Scholar 

  • Oren R, Ellsworth DS, Johnsen KH, Phillips N, Ewers BE, Maier C, Schäfer KVR, McCarthy H, Hendrey G, McNulty SG, Katul GG (2001) Soil fertility limits carbon sequestration by forest ecosystems in a CO2-enriched atmosphere. Nature 411:469–472

    Article  CAS  PubMed  Google Scholar 

  • Osborne CP, Drake BG, LaRoche J, Long SP (1997) Does long-term elevation of CO2 concentration increase photosynthesis in forest floor vegetation? Plant Physiol 114:337–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Overdieck D (1989) The effects of preindustrial and predicted future atmospheric CO2 concentration on Lyonia mariana L.D. Don. Funct Ecol 3:569–576

    Article  Google Scholar 

  • Overdieck D, Strassemeyer J (2005) Gas exchange of Gingko biloba leaves at different CO2 concentration levels. Flora 200:159–167

    Article  Google Scholar 

  • Pearcy RW, Troughton J (1975) C4 photosynthesis in tree form Euphorbia species from Hawaiian rainforest sites. Plant Physiol 55:1054–1056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peterson AG, Ball JT, Luo Y, Field CB, Curtis PS, Griffin KL, Gunderson CA, Norby RJ, Tissue DT, Forstreuter M, Rey A, Vogel CS (1999) Quantifying the response of photosynthesis to changes in leaf nitrogen content and leaf mass per area in plants grown under atmospheric CO2 enrichment. Plant Cell Environ 22:998–1109

    Article  Google Scholar 

  • Possel M, Hewitt CN (2009) Gas exchange and photosynthetic performance of the tropical tree Acacia nigrescens when grown in different CO2 concentrations. Planta 229:837–846

    Article  Google Scholar 

  • Reich PB, Walters MB, Ellworth DS, Uhl C (1994) Photosynthesis-nitrogen relations in Amazonian tree species. I. Patterns among species and communities. Oecologia 97:62–72

    Article  Google Scholar 

  • Sage RF (2004) The evolution of C4 photosynthesis. New Phytol 161:341–370

    Article  CAS  Google Scholar 

  • Stitt M (1991) Rising CO2 levels and their potential significance of carbon flow in photosynthetic cells. Plant Cell Environ 14:741–762

    Article  CAS  Google Scholar 

  • Strain BR, Cure JD (1985) Direct effects of increasing carbon dioxide on vegetation. US DOE/ER-0238, Durham

    Google Scholar 

  • Strassemeyer J (2002) Gaswechsel (CO2/H2O) von Eichenbeständen (Quercus robur L.) unter erhöhter atmosphärischer CO2-Konzentration. Dissertation, TU-Berlin, Germany, pp 98–99, 120–123 (in German, with English abstract)

    Google Scholar 

  • Strassemeyer J, Forstreuter M, Overdieck D. (1997) Temperatur- und CO2-Abhängigkeit des Gaswechsels von Fagus sylvatica L. nach Wachstum unter erhöhter atmosphärischer CO2-Konzentration. Verhandlungen der Gesellschaft für Ökologie 27:303–309 (in German, with English abstract)

    Google Scholar 

  • Stylinski CD, Oechel WC, Gamon JA, Tissue DT, Miglietta F, Raschi A (2000) Effects of lifelong [CO2] enrichment on carboxylation and light utilization of Quercus pubescens Willd., examined with gas exchange, biochemistry, and optical techniques. Plant Cell Environ 23:1353–1362

    Article  CAS  Google Scholar 

  • Tissue DT, Griffin KL, Ball JT (1999) Photosynthetic adjustment in field-grown Ponderosa pine trees after six years of exposure to elevated CO2. Tree Physiol 19:221–228

    Article  PubMed  Google Scholar 

  • Tognetti R, Sebastiani L, Vitagliano C, Raschi A, Minnoci A (2001) Responses of two olive tree (Olea europea L.) cultivars to elevated CO2 concentration in the field. Photosynthetica 39:403–410

    Article  Google Scholar 

  • Tolbert NE, Zelitch I (1983) Carbon metabolism. In: Lemon ER (ed) CO2 and plants. The response of plants to rising levels of atmospheric carbon dioxide. Westview Press, Boulder, pp 21–64

    Google Scholar 

  • Urban O (2003) Physiological impacts of elevated CO2 concentration ranging from molecular to whole plant responses. Photosynthetica 41:9–20

    Article  CAS  Google Scholar 

  • Valentini R, Epron D, De Angelis R, Matteucci G, Dreyer E (1995) In situ estimation of net assimilation, photosynthetic electron flow and photorespiration in Turkey oak (Q. cerris L.) leaves: diurnal cycles under different levels of water supply. Plant Cell Environ 18:631–640

    Article  CAS  Google Scholar 

  • von Caemmerer S, Farquhar GD (1981) Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta 153:376–387

    Article  Google Scholar 

  • Wang X-W, Zhao M, Mao S-Y, Zhang D-L, Zhao X-Z (2008) Combination of elevated CO2 concentration and elevated temperature only promote photosynthesis of Quercus mongolica seedlings. Russ J Plant Physiol 55:54–58

    Article  CAS  Google Scholar 

  • Warren CR (2008) Does growth temperature affect the temperature responses of photosynthesis and internal conductance to CO2? A test with Eucalyptus regnans. Tree Physiol 28:11–19

    Article  CAS  PubMed  Google Scholar 

  • Warren CR, Deyer E (2006) Temperature response of photosynthesis and internal conductance to CO2: results from two independent approaches. J Exp Bot 57:3057–3067

    Article  CAS  PubMed  Google Scholar 

  • Way DA, Sage RF (2008) Elevated growth temperatures reduce the carbon gain of black spruce [Picea mariana (Mill.) B.S.P.]. Glob Chang Biol 14:624–636

    Article  Google Scholar 

  • Zhang JL, Meng LZ, Cao KF (2008) Sustained diurnal photosynthetic depression in uppermost-canopy leaves of four dipterocarp species in the rainy and dry seasons: does photorespiration play a role in photoprotection? Tree Physiol 29:217–228

    Article  CAS  PubMed  Google Scholar 

  • Zhou YM, Wang CG, Han SJ, Cheng XB, Li MH, Fan AN, Wang XX (2011) Species-specific and needle age-related responses of photosynthesis in two Pinus species to long-term exposure to elevated CO2 concentration. Trees 25:163–173

    Article  CAS  Google Scholar 

  • Ziska LH, Hogan KP, Smith AP, Drake BG (1991) Growth and photosynthetic response of nine tropical species with long-term exposure to elevated carbon dioxide. Oecologia 86:383–389

    Article  Google Scholar 

  • Zotz G, Pepin S, Körner C (2005) No down-regulation of leaf photosynthesis in mature forest trees after three years of exposure to elevated CO2. Plant Biol 7:369–374

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Overdieck, D. (2016). CO2 Net Assimilation of Leaves. In: CO2, Temperature, and Trees. Ecological Research Monographs. Springer, Singapore. https://doi.org/10.1007/978-981-10-1860-2_3

Download citation

Publish with us

Policies and ethics