Research Methods

  • Dieter Overdieck
Part of the Ecological Research Monographs book series (ECOLOGICAL)


A comprehensive overview is given of global experimental approaches to studying the effects of increasing [CO2] and temperature at the leaf, branch, individual tree, and tree-group scale. One facility that uses small stands of young trees in soil-litter-plant enclosures (model ecosystems) is described in detail. Mathematical formulas for data evaluation are presented.

A number of experimental systems have been designed to allow the study of elevated [CO2] (e[CO2]) and temperature (eT) impacts on trees. They range from very small scale (leaf-based) to attempts to create small ecosystems (“model ecosystems,” “terracosms”) and to free-air CO2 enrichment. Each strategy presents advantages and challenges and offers some valuable information on how trees can be expected to react to increased levels of [CO2] and temperature. In this chapter, the range of experimental systems is described. Results of studies undertaken using these methods will be presented in the subsequent chapters.


Gas exchange systems Phytotron Branch bag Open-top chamber Whole-tree chamber Free air CO2 enrichment Natural CO2 springs Model ecosystem 


  1. Amthor JS (1995) Terrestrial higher-plant responses to increasing atmospheric [CO2] in relation to the global carbon cycle. Glob Chang Biol 1:243–274CrossRefGoogle Scholar
  2. Barron-Gafford G, Martens D, Grieve K, Biel K, Kudeyarov V, McLain JET, Lipson D, Murthy R (2005) Growth of Eastern Cottonwoods (Populus deltoides) in elevated [CO2] stimulates stand-level respiration and rhizodeposition of carbohydrates, accelerates soil nutrient depletion, yet stimulates above- and belowground biomass production. Glob Chang Biol 11:1220–1233CrossRefGoogle Scholar
  3. Barton C (1998) The Edinburgh branch bags. In: Jarvis PG (ed; assisted by Aitken A (et al)) European forests and global change. The likely impacts of rising CO2 and temperature. Cambridge University Press, Cambridge, pp 20–23Google Scholar
  4. Barton CVM, Lee HSJ, Jarvis PG (1993) A branch bag and CO2 control system for long-term CO2 enrichment of mature Sitka spruce [Picea sitchensis (Bong.) Carr.). Plant Cell Environ 16:1139–1148CrossRefGoogle Scholar
  5. Barton CVM, Ellsworth DS, Medlyn BE, Duursma RA, Tissue DT, Adams MA, Eamus D, Conroy JP, McMurtie RE, Parsby J, Linder S (2010) Whole-tree chambers for elevated atmospheric CO2 experimentation and tree scale flux measurements in South-Eastern Australia: the Hawkesbury Forest Experiment. Agric For Meteorol 150:941–951CrossRefGoogle Scholar
  6. Ceulemans R (1998) Large open-top chambers for fast-growing poplars. In: Jarvis PG; assisted by Aitken AM et al (eds) European forests and global change. The likely impacts of rising CO2 and temperature. Cambridge University Press, Cambridge, pp 12–13Google Scholar
  7. Dempster WF (1999) Biosphere 2 engineering design. Ecol Eng 13:31–42CrossRefGoogle Scholar
  8. Dermody O (2006) Mucking trough multifactor experiments; design and analysis of multifactor studies in global change research. New Phytol 172:598–600CrossRefPubMedGoogle Scholar
  9. Dufrène E, Pontailler J-Y, Saugier B (1993) A branch bag technique for simultaneous CO2 enrichment and assimilation on beech (Fagus sylvatica L.). Plant Cell Environ 16:1131–1138CrossRefGoogle Scholar
  10. Eguchi N, Koike T, Ueda T (2005) Free air CO2 enrichment in Northern Japan. Vaisala News 169:15–16Google Scholar
  11. Eguchi N, Karatsu K, Ueda T, Funada R, Takagi K, Hiura T, Sasa K, Koike T (2008) Photosynthetic responses of birch and alder saplings grown in a free air CO2 enrichment system in Northern Japan. Trees 22:437–447CrossRefGoogle Scholar
  12. Finzi AC, Allen AS, DeLucia EH, Ellsworth DS, Schlesinger WH (2001) Forest litter production, chemistry, and decomposition following two years of free air enrichment. Ecology 82:470–484Google Scholar
  13. Forstreuter M (1998) What can we learn from the microcosms?. In: Jarvis PG (ed; assisted by Aitken AM (et al)) European forests and global change. The likely impacts of rising CO2 and temperature. Cambridge University Press, Cambridge, pp 274–292Google Scholar
  14. Forstreuter M (2001) Auswirkungen globaler Klimaänderungen auf das Wachstum und den Gaswechsel (CO2/H2O) von Rotbuchenbeständen (Fagus sylvatica L.). Habilitationsschrift (in German with English abstract). TU-Berlin, Gerrmany, pp 115–120, 180–183Google Scholar
  15. Geßler A, Keitel C, Kreuzwieser J, Matyssek R, Seiler W, Rennenberg H (2007) Potential risks of European beech (Fagus sylvatica L.) in a changing climate. Trees 21:1–11CrossRefGoogle Scholar
  16. Godlewski E (1873) Abhängigkeit der Sauerstoffausscheidung der Blätter von dem Kohlensäuregehalt der Luft. Arbeiten des Botanischen Instituts in Würzburg XI:343–370 (in German)Google Scholar
  17. Griffin KL, Turnbull M, Murthy R, Lin G, Adams J, Farnsworth B, Mahato T, Bazins G, Potasnak M, Berry JA (2002) Leaf respiration is differently affected by leaf vs. stand-level night-time warming. Glob Chang Biol 8:479–485CrossRefGoogle Scholar
  18. Hättenschwiler S, Miglietta F, Raschi A, Körner C (1997) Thirty years of in situ tree growth under elevated CO2: a model for future forest responses? Glob Chang Biol 3:463–471CrossRefGoogle Scholar
  19. Hättenschwiler S, Handa IT, Egli L, Asshoff R, Ammann W, Körner C (2002) Atmospheric CO2 enrichment of alpine treeline conifers. New Phytol 156:363–375CrossRefGoogle Scholar
  20. Hendrey GR, Ellsworth DS, Lewin KF, Nagy J (1999) A free-air enrichment system for exposing tall forest vegetation to elevated atmospheric CO2. Glob Chang Biol 5:293–309CrossRefGoogle Scholar
  21. Hymus GJ, Johnson DP, Dore S, Anderson HP, Hinkle CR, Drake BG (2003) Effects of elevated atmospheric CO2 on net ecosystem CO2 exchange of scrub-oak ecosystem. Glob Chang Biol 9:1802–1812CrossRefGoogle Scholar
  22. Janous D, Kalina J (1998) Field chambers in a montane Norway spruce stand. In: Jarvis PG (ed.; assisted by Aitken AM (et al)) European forests and global change. The likely impacts of rising CO2 and temperature. Cambridge University Press, Cambridge, pp 10–12Google Scholar
  23. Karnosky DF, Zak DR, Pregnitzer KS, Awmack CS, Bockheim JG et al (2003) Tropospheric O3 moderates responses of temperate hardwood forests to elevated CO2: a synthesis of molecular to ecosytem results from the Aspen FACE project. Funct Ecol 17:289–304CrossRefGoogle Scholar
  24. Kellomäki S (1998) Mekrijärvi experiment. In: Jarvis PG (ed; assisted by Aitken AM (et al)) European forests and global change. The likely impacts of rising CO2 and temperature. Cambridge University Press, Cambridge pp 18–19Google Scholar
  25. Körner C (2006) Plant CO2 responses: an issue of definition, time and resource supply. Tansley Review. New Phytol 172:393–411CrossRefPubMedGoogle Scholar
  26. Laitat E (1998) An open-top chamber experiment in a forest environment. In: Jarvis PG (ed; assisted by Aitken AM (et al)) European forests and global change. The likely impacts of rising CO2 and temperature. Cambridge University Press, Cambridge, pp 8–10Google Scholar
  27. Lemon ER (ed) (1983) CO2 and plants. AAS Selected Symposium 84. Westview Press, Boulder, pp 1–280Google Scholar
  28. Leuzinger S, Hättenschwiler S (2013) Beyond global change: lessons from 25 years of CO2 research. Oecologia 171:639–651CrossRefPubMedGoogle Scholar
  29. Lewis JD, Olszyk D, Tingey DT (1999) Seasonal patterns of photosynthetic light response in Douglas–fir seedlings subjected to elevated atmospheric CO2 and temperature. Tree Physiol 19:243–252CrossRefPubMedGoogle Scholar
  30. Lewis JD, Lucash M, Olszyk DM, Tingey DT (2001) Seasonal patterns of photosynthesis in Douglas-fir seedlings during the third and fourth year of exposure to elevated carbon dioxide and temperature. Plant Cell Environ 24:539–548CrossRefGoogle Scholar
  31. Lin GH, Marino BDV, Wei YD, Adams J, Tubiello F, Berry JA (1998) An experimental and modeling study of responses in ecosystems and carbon exchanges to increasing CO2 concentrations using a tropical rain forest mesocosm. Aust J Plant Physiol 25:547–556CrossRefGoogle Scholar
  32. Long SP, Farage PK, Gracia RL (1996) Measurement of leaf and canopy photosynthetic CO2 exchange in the field. J Exp Bot 47:1629–1642CrossRefGoogle Scholar
  33. Lovelock CE, Virgo A, Popp M, Winter K (1999) Effects elevated CO2 concentrations on photosynthesis, growth and reproduction of branches of the tropical canopy tree species Luehea seemannii Tr. & Planch. Plant Cell Environ 22:49–59CrossRefGoogle Scholar
  34. Medhurst J, Parsby J, Linder S, Wallin G, Ceschia E, Slaney M (2006) A whole tree chamber system for examining tree-level physiological responses of field-grown trees to environmental variation and climate change. Plant Cell Environ 29:1853–1869CrossRefPubMedGoogle Scholar
  35. Miglietta F, Peressotti A, Vaccari FP, Zaldei A, DeAngelis P, Scarascia-Mugnozza G (2001) Free-air CO2 enrichment (FACE) of poplar plantation: the POPFACE fumigation system. New Phytol 150:465–476CrossRefGoogle Scholar
  36. Murthy R, Barron-Gafford G, Dougherty PM, Engel VC, Grieve K, Handley L, Klimas C, Potosnak MJ, Zarnoch SJ, Zhang J (2005) Increased leaf area dominates carbon flux response to elevated CO2 in stands of Populus deltoides (Bartr.). Glob Chang Biol 11:716–731CrossRefGoogle Scholar
  37. Natali SM, Sañudo-Wilhemy SA, Lerdau MT (2009a) Plant and soil mediation of elevated CO2 impacts on trace metals. Ecosystems 12:715–727CrossRefGoogle Scholar
  38. Natali SM, Sañudo-Wilhemy SA, Lerdau MT (2009b) Effects of elevated carbon dioxide and nitrogen fertilization on nitrate reductase activity in sweetgum and loblolly pine trees in two temperate forests. Plant Soil 314:197–210CrossRefGoogle Scholar
  39. Norby RJ, Todd DE, Fults J, Johnson DW (2001) Allometric determination of tree growth in a CO2-enriched sweetgum stand. New Phytol 150:477–487CrossRefGoogle Scholar
  40. Norby RJ, De Kauwe MG, Domingues TF, Duursma RA, Ellsworth DS, Goll DS, Lapola DM, Luus KA, MacKenzie AR, Medlyn BE, Pavlick R, Rammig A, Smith B, Thomas R, Thonicke K, Walker AP, Yang X, Zaehle S (2015) Model-data synthesis for the next generation of forest free-air CO2 enrichment (FACE) experiments. New Phytol 209:1–13. doi: 10.1111/nph.13593
  41. Okada M, Lieffering M, Nakamura H, Yoshimoto M, Kim HY, Kobayashi K (2001) Free-air CO2 enrichment (FACE) using pure CO2 injection: system description. New Phytol 150:251–260CrossRefGoogle Scholar
  42. Overdieck D (1989) The effects of preindustrial and predicted future atmospheric CO2 concentration on Lyonia mariana L.D. Don. Funct Ecol 3:569–576CrossRefGoogle Scholar
  43. Overdieck D (1993) Effects of atmospheric CO2 enrichment on CO2 gas exchange rates of beech stands in small model-ecosystems. Water Air Soil Pollut 70:259–277CrossRefGoogle Scholar
  44. Overdieck D, Bossemeyer D (1985) Langzeit-Effekte eines erhöhten CO2-Angebotes auf den CO2-Gaswechsel eines Modell-Ökosystems. Angewandte Botanik 59:179–198 (in German, with English abstract)Google Scholar
  45. Overdieck D, Forstreuter M (1987) Langzeit-Effekte eines erhöhten CO2–Angebotes bei Rotklee–Wiesenschwingelgemeinschaften. Verhandlungen der Gesellschaft für Ökologie (Gießen) 16:197–206 (in German, with English abstract)Google Scholar
  46. Overdieck D, Forstreuter M (1994) Evapotranspiration of beech stands and transpiration of beech leaves subject to atmospheric CO2 enrichment. Tree Physiol 14:997–1003CrossRefPubMedGoogle Scholar
  47. Overdieck D, Reining F (1986) Effect of atmospheric CO2 enrichment on perennial ryegrass and white clover competing in managed model-ecosystems. I. Phytomass production (Lolium perenne L. and Trifolium repens L.). Oecol Plant 21:357–366Google Scholar
  48. Overdieck D, Bossemeyer D, Lieth H (1984) Long-term effects of an increased CO2 concentration level on terrestrial plants in model-ecosystems. I. Phytomass production and competition of Trifolium repens L. and Lolium perenne L. Prog Biometeorol 3:344–352Google Scholar
  49. Overdieck D, Kellomäki S, Wang KY (1998) Do the effects of temperature and CO2 interact?. In: Jarvis PG (ed.; assisted by Aitken AM (et al.)) European forests and global change. The likely impacts of rising CO2 and temperature. Cambridge University Press, Cambridge, pp 236–273Google Scholar
  50. Paoletti E, Nourrisson G, Garrec JP, Raschi A (1998) Modifications of leaf surface structures of Quercus ilex L. in open, naturally CO2-enriched environments. Plant Cell Environ 21:1071–1075CrossRefGoogle Scholar
  51. Pepin S, Körner C (2002) Web-FACE: a new canopy free-air CO2 enrichment system for tall trees in mature forests. Qecologia 133:1–9Google Scholar
  52. Polle A, McKee I, Blaschke L (2001) Altered physiological and growth responses to elevated [CO2] in offspring from holm oak (Quercus ilex L.) mother trees with lifetime exposure to naturally elevated [CO2]. Plant Cell Environ 24:1075–1083CrossRefGoogle Scholar
  53. Pontailler J-Y, Barton CV, Durrant D, Forstreuter M (1998) How can we study CO2 impacts on trees and forests?. In: Jarvis PG (ed; assisted by Aitken AM (et al)) European forests and global change. The likely impacts of rising CO2 and temperature. Cambridge University Press, Cambridge, pp 1–28Google Scholar
  54. Rapparini F, Baraldi R, Miglietta F, Loreto F (2004) Isoprenoid emission in trees of Quercus pubescens and Quercus ilex with lifetime exposure to naturally high CO2 environment. Plant Cell Environ 27:381–391CrossRefGoogle Scholar
  55. Raschi A, Miglietta F, Tognetti R, Van Gardingen PR (eds) (1997) Plant responses to carbon dioxide: evidence from natural springs. Cambridge University Press, Cambridge, pp 1–288Google Scholar
  56. Scarascia-Mugnozza G, De Angelis P (1998) Open-top chambers in a natural Mediterranean ecosystem. In: Jarvis PG (ed; assisted by Aitken AM (et al)) European forests and global change. The likely impacts of rising CO2 and temperature. Cambridge University Press, Cambridge, pp 5–8Google Scholar
  57. Scholefield PA, Doick KJ, Herbert BM, Hewitt CNS, Schnitzler J-P, Pinelli P, Loreto F (2004) Impact of rising CO2 on emissions of volatile organic compounds: isoprene emission from Phragmites australis growing at elevated CO2 in a natural carbon dioxide spring. Plant Cell Environ 27:393–401CrossRefGoogle Scholar
  58. Schulte M, von Ballmoos P, Rennenberg H, Herschbach C (2002) Life-long growth of Quercus ilex L. at natural CO2 springs acclimates sulphur, nitrogen and carbohydrate metabolism of the progeny to elevated pCO2. Plant Cell Environ 25:1715–1727CrossRefGoogle Scholar
  59. Schwanz P, Polle A (1998) Antioxidative systems, pigment and protein contents in leaves of adult mediterranean oak species (Quercus pubescens and Q. ilex) with lifetime exposure to elevated CO2. New Phytol 140:411–421CrossRefGoogle Scholar
  60. Smith AR, Lukac M, Bambrick M, Miglietta F, Godbold DL (2013a) Tree species diversity interacts with elevated CO2 to induce a greater root system response. Glob Chang Biol 19:217–228CrossRefPubMedGoogle Scholar
  61. Smith AR, Lukac M, Hood R, Healey JR, Miglietta F, Godbold DL (2013b) Elevated CO2 enrichment induces a differential biomass response in a mixed species temperate forest plantation. New Phytol 198:156–168CrossRefPubMedGoogle Scholar
  62. Sprugel DG, Hinckley TM, Schaap W (1991) The theory and practice of branch autonomy. Annu Rev Ecol Evol Syst 22:309–334CrossRefGoogle Scholar
  63. Strassemeyer J (2002) Gaswechsel (CO2/H2O) von Eichenbeständen (Quercus robur L.) unter erhöhter atmosphärischer CO2-Konzentration. Dissertation, TU-Berlin, Germany, pp 98–99, 120–123 (in German, with English abstract)Google Scholar
  64. Taylor G, Tallis MJ, Giardina C, Percy KE, Miglietta F, Gupta PS, Gioli B, Calfapietra C, Gielen B, Kubiske ME, Scarascia-Mugnozza GE, Kets K, Long SP, Karnosky DF (2008) Future atmospheric CO2 leads to delayed autumnal senescence. Glob Chang Biol 14:264–275CrossRefGoogle Scholar
  65. Tingey DT, Phillips DL, Olszyk DM, Johnson MG, Rygiewicz PT (1996) A versatile sunlit contolled-environment facility for studying plant soil processes. J Environ Qual 25:614–625CrossRefGoogle Scholar
  66. Tingey DT, Phillips DL, Lee EH, Waschmann RS, Olszyk DM, Rygiewicz PT, Johnson MG (2007) Elevated temperature, soil moisture and seasonality but not CO2 affect canopy assimilation and system respiration in seedling Douglas-fir ecosystems. Agric For Meteorol 143:30–48CrossRefGoogle Scholar
  67. Tognetti R, Cherubini P, Innes JL (2000) Comparative stem-growth rates of Mediterranean trees under background and naturally enhanced ambient CO2 concentrations. New Phytol 146:59–74CrossRefGoogle Scholar
  68. van Gardingen PR, Grace J, Harkness DD, Miglietta F, Raschi A (1995) Carbon dioxide emissions at an Italian mineral spring: measurements of average CO2 concentration and air temperature. Agric For Meteorol 73:17–27CrossRefGoogle Scholar
  69. Watanabe M, Watanabe Y, Kitaoka S, Utsugi H, Kita K, Koike T (2011) Growth and photosnthetic traits of hybrid larch F1 (Larix gmelinii var. japonica x L. kaempferi) under elevated CO2 concentration with low nutrient availability. Tree Physiol 31:965–975CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2016

Authors and Affiliations

  • Dieter Overdieck
    • 1
  1. 1.Institute of Ecology, Ecology of Woody PlantsTechnical University of BerlinBerlinGermany

Personalised recommendations