Advertisement

Modeling Responses to [CO2] and Temperature

  • Dieter Overdieck
Chapter
Part of the Ecological Research Monographs book series (ECOLOGICAL)

Abstract

All the updated modeling methods that were used for data evaluation in this book are described, and a special model is presented covering the complete CO2 and H2O gas exchange of small tree stands in soil-litter-plant systems (model ecosystems).

Keywords

Rubisco Maximum carboxylation rate Electron transport rate Leaf dark respiration Photosynthetic photon flux density Soil CO2 efflux Big-leaf model 

References

  1. Amthor JS (1994) Scaling CO2-photosynthesis relationships from the leaf to the canopy. Photosynth Res 39:321–350CrossRefPubMedGoogle Scholar
  2. Ball JT, Woodrow IE, Berry JA (1987) A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. In: Biggins I (ed) Progress in photosynthesis research. Martinus Nihoff, Dordrecht, pp 221–224CrossRefGoogle Scholar
  3. Caldwell MM, Meister H-P, Tenhunen JD, Lange OL (1986) Canopy structure, light microclimate and leaf gas exchange of Quercus coccifera L. in a Portuguese macchia: measurements in different canopy layers and simulations with a canopy model. Trees 1:25–41CrossRefGoogle Scholar
  4. Chen X, Post WM, Norby RJ, Classen AT (2011) Modeling soil respiration and variations in source components using a multi-factor global climate change experiment. Clim Chang 107:459–480CrossRefGoogle Scholar
  5. Duursma RA, Barton CVM, Lin Y-S, Medlyn BE, Eamus D, Tissue DT, Ellsworth DS, McMurtie RE (2014) The peaked response of transpiration rate to vapour pressure deficit in field conditions can be explained by the temperature optimum of photosynthesis. Agric For Meteorol 189–190:2–10CrossRefGoogle Scholar
  6. Falge EM (1997) Die Modellierung der Kronendachtranspiration von Fichtenbeständen (Picea abies (L.) Karst.). Bayreuther Forum Ökologie, Band 48:1–221 (in German)Google Scholar
  7. Farquhar GD, von Caemmerer S (1982) Modelling of photosynthetic response to environmental conditions. Springer, Berlin, pp 549–587Google Scholar
  8. Farquhar GD, Wong CS (1984) Stomatal conductance and photosynthesis. Aust J Plant Physiol 11:191–210CrossRefGoogle Scholar
  9. Farquhar GD, von Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78–90CrossRefPubMedGoogle Scholar
  10. Forstreuter M (2001) Auswirkungen globaler Klimaänderungen auf das Wachstum und den Gaswechsel (CO2/H2O) von Rotbuchenbeständen (Fagus sylvatica L.). Habilitationsschrift (in German with English abstract), TU-Berlin, Gerrmany, pp 115–120, 180–183Google Scholar
  11. Friend A, Kellomäki S, Kruijt B (1998) Modelling leaf, tree and forest responses to increasing atmospheric CO2 and temperature. In: Jarvis PG [ed; assisted by Aitken AM (et al.)]: European forests and global change. The likely impacts of rising CO2 and temperature. Cambridge University Press, Cambridge, UK, pp 293–346Google Scholar
  12. Grantz DA, Moore PH, Zeiger E (1987) Stomatal responses to light and humidity in sugarcane, prediction of daily time courses and identification of potential selection criteria. Plant Cell Environ 10:197–204Google Scholar
  13. Hall M, Medlyn BE, Abramowitz G, Franklin O, Räntfors M, Linder S, Wallin G (2013) Which are the most important parameters for modeling carbon assimilation in boreal Norway spruce under elevated [CO2] and temperature conditions? Tree Physiol 33:1156–1176CrossRefPubMedGoogle Scholar
  14. Harley PC, Baldocchi DD (1995) Scaling carbon dioxide and water vapour exchange from leaf to canopy in a deciduous forest. I. Leaf model parametrization. Plant Cell Environ 18:1157–1173CrossRefGoogle Scholar
  15. Harley PC, Thomas RB, Reynolds JF, Strain BR (1992) Modelling photosynthesis of cotton grown in elevated CO2. Plant Cell Environ 15:271–282CrossRefGoogle Scholar
  16. Jarvis PJ (1976) The interaction of the variations in leaf water potential and stomatal conductance found in canopies in the field. Philos Trans R Soc London Ser B 273:593–610CrossRefGoogle Scholar
  17. Leuning R, Kelliher FM, De Rury DG, Schulze ED (1995) Leaf nitrogen, photosynthesis, conductance and transpiration: scaling from leaves to canopies. Plant Cell Environ 18:1183–1200CrossRefGoogle Scholar
  18. Medlyn BE (2000) The MAESTRA model. http://www.ed.ac.uk/~bmedlyn/maestra
  19. Medlyn BE, Dreyer E, Ellsworth D, Forstreuter M, Harley PC, Kirschbaum MUF, Le Roux X, Montpied P, Strassemeyer J, Walcroft A, Wang K, Loustau D (2002) Temperature response of parameters of a biochemically based model of photosynthesis. II. A review of experimental data. Plant Cell Environ 25:1167–1179CrossRefGoogle Scholar
  20. Medlyn BE, Duursma RA, Eamus D, Ellsworth DS, Prentice IC, Barton CM, Crous KY, De Angelis P, Freeman M, Wingate L (2011) Reconciling the optimal and empirical approaches to modelling stomatal conductance. Glob Chang Biol 17:2134–2144CrossRefGoogle Scholar
  21. Overdieck D, Kellomäki S, Wang KY (1998) Do the effects of temperature and CO2 interact? In: Jarvis PG [ed; assisted by Aitken AM (et al.)]: European forests and global change. The likely impacts of rising CO2 and temperature. Cambridge University Press, Cambridge, UK, pp 236–273Google Scholar
  22. Reed KL, Hamerly ER, Dinger BE, Jarvis PG (1976) An analytical model for field measurement of photosynthesis. Appl Ecol 13:924–942Google Scholar
  23. Sharpe PJD, DeMichele DW (1977) Reaction kinetics of poikilotherm development. J Theor Biol 64:649–670CrossRefPubMedGoogle Scholar
  24. Strassemeyer J (2002) Gaswechsel (CO2/H2O) von Eichenbeständen (Quercus robur L.) unter erhöhter atmosphärischer CO2-Konzentration. Dissertation, TU-Berlin, Germany, pp 98–99, 120–123 (in German, with English abstract)Google Scholar
  25. Ziegler-Jöns A, Selinger H (1987) Calculation of leaf photosynthetic parameters from light-response curves for ecophysiological applications. Planta 171:412–415CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2016

Authors and Affiliations

  • Dieter Overdieck
    • 1
  1. 1.Institute of Ecology, Ecology of Woody PlantsTechnical University of BerlinBerlinGermany

Personalised recommendations