Skip to main content

Modeling Responses to [CO2] and Temperature

  • Chapter
  • First Online:
  • 901 Accesses

Part of the book series: Ecological Research Monographs ((ECOLOGICAL))

Abstract

All the updated modeling methods that were used for data evaluation in this book are described, and a special model is presented covering the complete CO2 and H2O gas exchange of small tree stands in soil-litter-plant systems (model ecosystems).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Amthor JS (1994) Scaling CO2-photosynthesis relationships from the leaf to the canopy. Photosynth Res 39:321–350

    Article  CAS  PubMed  Google Scholar 

  • Ball JT, Woodrow IE, Berry JA (1987) A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. In: Biggins I (ed) Progress in photosynthesis research. Martinus Nihoff, Dordrecht, pp 221–224

    Chapter  Google Scholar 

  • Caldwell MM, Meister H-P, Tenhunen JD, Lange OL (1986) Canopy structure, light microclimate and leaf gas exchange of Quercus coccifera L. in a Portuguese macchia: measurements in different canopy layers and simulations with a canopy model. Trees 1:25–41

    Article  Google Scholar 

  • Chen X, Post WM, Norby RJ, Classen AT (2011) Modeling soil respiration and variations in source components using a multi-factor global climate change experiment. Clim Chang 107:459–480

    Article  CAS  Google Scholar 

  • Duursma RA, Barton CVM, Lin Y-S, Medlyn BE, Eamus D, Tissue DT, Ellsworth DS, McMurtie RE (2014) The peaked response of transpiration rate to vapour pressure deficit in field conditions can be explained by the temperature optimum of photosynthesis. Agric For Meteorol 189–190:2–10

    Article  Google Scholar 

  • Falge EM (1997) Die Modellierung der Kronendachtranspiration von Fichtenbeständen (Picea abies (L.) Karst.). Bayreuther Forum Ökologie, Band 48:1–221 (in German)

    Google Scholar 

  • Farquhar GD, von Caemmerer S (1982) Modelling of photosynthetic response to environmental conditions. Springer, Berlin, pp 549–587

    Google Scholar 

  • Farquhar GD, Wong CS (1984) Stomatal conductance and photosynthesis. Aust J Plant Physiol 11:191–210

    Article  CAS  Google Scholar 

  • Farquhar GD, von Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78–90

    Article  CAS  PubMed  Google Scholar 

  • Forstreuter M (2001) Auswirkungen globaler Klimaänderungen auf das Wachstum und den Gaswechsel (CO2/H2O) von Rotbuchenbeständen (Fagus sylvatica L.). Habilitationsschrift (in German with English abstract), TU-Berlin, Gerrmany, pp 115–120, 180–183

    Google Scholar 

  • Friend A, Kellomäki S, Kruijt B (1998) Modelling leaf, tree and forest responses to increasing atmospheric CO2 and temperature. In: Jarvis PG [ed; assisted by Aitken AM (et al.)]: European forests and global change. The likely impacts of rising CO2 and temperature. Cambridge University Press, Cambridge, UK, pp 293–346

    Google Scholar 

  • Grantz DA, Moore PH, Zeiger E (1987) Stomatal responses to light and humidity in sugarcane, prediction of daily time courses and identification of potential selection criteria. Plant Cell Environ 10:197–204

    Google Scholar 

  • Hall M, Medlyn BE, Abramowitz G, Franklin O, Räntfors M, Linder S, Wallin G (2013) Which are the most important parameters for modeling carbon assimilation in boreal Norway spruce under elevated [CO2] and temperature conditions? Tree Physiol 33:1156–1176

    Article  CAS  PubMed  Google Scholar 

  • Harley PC, Baldocchi DD (1995) Scaling carbon dioxide and water vapour exchange from leaf to canopy in a deciduous forest. I. Leaf model parametrization. Plant Cell Environ 18:1157–1173

    Article  Google Scholar 

  • Harley PC, Thomas RB, Reynolds JF, Strain BR (1992) Modelling photosynthesis of cotton grown in elevated CO2. Plant Cell Environ 15:271–282

    Article  CAS  Google Scholar 

  • Jarvis PJ (1976) The interaction of the variations in leaf water potential and stomatal conductance found in canopies in the field. Philos Trans R Soc London Ser B 273:593–610

    Article  CAS  Google Scholar 

  • Leuning R, Kelliher FM, De Rury DG, Schulze ED (1995) Leaf nitrogen, photosynthesis, conductance and transpiration: scaling from leaves to canopies. Plant Cell Environ 18:1183–1200

    Article  Google Scholar 

  • Medlyn BE (2000) The MAESTRA model. http://www.ed.ac.uk/~bmedlyn/maestra

  • Medlyn BE, Dreyer E, Ellsworth D, Forstreuter M, Harley PC, Kirschbaum MUF, Le Roux X, Montpied P, Strassemeyer J, Walcroft A, Wang K, Loustau D (2002) Temperature response of parameters of a biochemically based model of photosynthesis. II. A review of experimental data. Plant Cell Environ 25:1167–1179

    Article  CAS  Google Scholar 

  • Medlyn BE, Duursma RA, Eamus D, Ellsworth DS, Prentice IC, Barton CM, Crous KY, De Angelis P, Freeman M, Wingate L (2011) Reconciling the optimal and empirical approaches to modelling stomatal conductance. Glob Chang Biol 17:2134–2144

    Article  Google Scholar 

  • Overdieck D, Kellomäki S, Wang KY (1998) Do the effects of temperature and CO2 interact? In: Jarvis PG [ed; assisted by Aitken AM (et al.)]: European forests and global change. The likely impacts of rising CO2 and temperature. Cambridge University Press, Cambridge, UK, pp 236–273

    Google Scholar 

  • Reed KL, Hamerly ER, Dinger BE, Jarvis PG (1976) An analytical model for field measurement of photosynthesis. Appl Ecol 13:924–942

    Google Scholar 

  • Sharpe PJD, DeMichele DW (1977) Reaction kinetics of poikilotherm development. J Theor Biol 64:649–670

    Article  CAS  PubMed  Google Scholar 

  • Strassemeyer J (2002) Gaswechsel (CO2/H2O) von Eichenbeständen (Quercus robur L.) unter erhöhter atmosphärischer CO2-Konzentration. Dissertation, TU-Berlin, Germany, pp 98–99, 120–123 (in German, with English abstract)

    Google Scholar 

  • Ziegler-Jöns A, Selinger H (1987) Calculation of leaf photosynthetic parameters from light-response curves for ecophysiological applications. Planta 171:412–415

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Overdieck, D. (2016). Modeling Responses to [CO2] and Temperature. In: CO2, Temperature, and Trees. Ecological Research Monographs. Springer, Singapore. https://doi.org/10.1007/978-981-10-1860-2_13

Download citation

Publish with us

Policies and ethics