Introduction

  • Dieter Overdieck
Chapter
Part of the Ecological Research Monographs book series (ECOLOGICAL)

Abstract

The importance of studying the ecological effects of increasing CO2 concentration [CO2] and temperature on trees is emphasized. Detailed measurements documenting [CO2] increases over the past decades are compared. A novel contribution to the body of knowledge is the presentation of the particularities of [CO2] (over 20 years) and temperature (over 60 years) for one city (CO2 source). Daily and yearly courses are shown, and reasons for oscillations are discussed.

Keywords

Atmospheric CO2 concentration increase Daily course of [CO2Air temperature trend Urban area Central Europe 

References

  1. Augustin L, Barbante C, Barnes PRF, Barnola J-M, Bilger M, Castellano E et al (2004) Eight glacial cycles from an Antarctic ice core. Nature 429:623–628CrossRefPubMedGoogle Scholar
  2. Bonan GB (2008) Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320:1444–1449CrossRefPubMedGoogle Scholar
  3. Collins MR, Knutti R, Arblaster J, Dufresne J-L, Fichefet T, Friedlingstein P et al (2013) Long-term climate change: projections, commitments and irreversibility. In: Stocker TF, Qin G-K, Plattner M, Tignor M, Allen SK et al (eds) Climate change 2013. The physical science base. Contribution of the working group I of the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 1029–1136Google Scholar
  4. Etheridge DM, Steele LP, Langenfelds RI, Francey RJ, Barnola J-M, Morgan VI (1996) Natural and anthropogenic changes in atmospheric CO2 over the last 1000 years from air in Antarctic ice and firn. J Geophys Res 101(D2):4115–4128CrossRefGoogle Scholar
  5. Forstreuter M, Tschuschke A, Overdieck D (1994) Atmospheric CO2 record from Osnabrück. In: Boden TA, Kaiser DP, Sepanski RJ, Stoss E (eds) Trends’93: a compendium of data on global change, ORNL/CDIAC-65. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, pp 157–160Google Scholar
  6. Godlewski E (1873) Abhängigkeit der Sauerstoffausscheidung der Blätter von dem Kohlensäuregehalt der Luft. Arbeiten des Botanischen Instituts in Würzburg XI:343–370 (in German)Google Scholar
  7. Hartmann DL, Klein Tank AMG, Rusticucci M, Alexander LV, Brönnimann S, Charabi Y et al (2013) Observations: atmosphere and surface. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J et al (eds) The physical science basis. Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, New York, pp 161–218Google Scholar
  8. Indermühle A, Stocker TF, Joos F, Fischer H, Smith HJ, Wahlen M et al (1999) Holocene carbon-cycle dynamics based on CO2 trapped in ice at Taylor Dome, Antarctica. Nature 398:121–126CrossRefGoogle Scholar
  9. IPCC (2007) Climate change. In: Solomon S, Qin D, Manning M, Chen Z, Marqius M, Averyt K, Tignor MMB, Miller HL (eds) The physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 1–996Google Scholar
  10. IPCC (2013) Climate change. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) The physical science basis. Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 1–1535Google Scholar
  11. Kaplan JO, New M (2006) Arctic climate change with a 2 °C global warming: timing, climate patterns and vegetation change. Climate Change 79:213–241CrossRefGoogle Scholar
  12. Keeling CD, Whorf TP (1992) Mauna Loa record. In: Boden TA, Sepanski RJ, Stoss FW (eds) Trends’91. A compendium of data on global change. Highlights. Carbon Dioxide Information Center, Oak Ridge National Laboratory, Oak Ridge, pp 14–17Google Scholar
  13. Keeling CD, Bacastow R, Bainbridge A, Ekdahl C, Guenther P, Waterman L, Chin J (1976a) Atmospheric carbon-dioxide variations at the Mauna-Loa observatory, Hawaii. Tellus 28:538–551CrossRefGoogle Scholar
  14. Keeling CD, Adams JA, Ekdahl CA (1976b) Atmospheric carbon-dioxide variations at South Pole. Tellus 28:553–564Google Scholar
  15. Körner C (2006) Plant CO2 responses: an issue of definition, time and resource supply. Tansley review. New Phytol 172:393–411CrossRefPubMedGoogle Scholar
  16. Long SP, Ainsworth EA, Rogers A, Ort DR (2004) Rising atmospheric carbon dioxide: plants face the future. Annu Rev Plant Biol 55:591–628CrossRefPubMedGoogle Scholar
  17. Monnin E, Indermühle A, Dellenbach A, Flückiger J, Stauffer B, Socker TF, Raynaud D, Barnola J-M (2001) Atmospheric CO2 concentration over the last glacial termination. Science 291:112–114CrossRefPubMedGoogle Scholar
  18. Petit JR, Jouzel J, Raynaud D, Barkov NI, Barnola J-M, Basile I et al (1999) Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399:429–436CrossRefGoogle Scholar
  19. Possel M, Hewitt CN (2009) Gas exchange and photosynthetic performance of the tropical tree Acacia nigrescens when grown in different CO2 concentrations. Planta 229:837–846CrossRefGoogle Scholar
  20. Tans P (2009) An accounting of the observed increase in oceanic and atmospheric CO2 and an outlook for the future. Oceanography 22:26–35CrossRefGoogle Scholar
  21. Ward JK, Strain BR (1999) Elevated CO2 studies: past, present and future. Tree Physiol 19:211–220CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2016

Authors and Affiliations

  • Dieter Overdieck
    • 1
  1. 1.Institute of Ecology, Ecology of Woody PlantsTechnical University of BerlinBerlinGermany

Personalised recommendations