Skip to main content

Introduction

  • Chapter
  • First Online:
CO2, Temperature, and Trees

Part of the book series: Ecological Research Monographs ((ECOLOGICAL))

  • 925 Accesses

Abstract

The importance of studying the ecological effects of increasing CO2 concentration [CO2] and temperature on trees is emphasized. Detailed measurements documenting [CO2] increases over the past decades are compared. A novel contribution to the body of knowledge is the presentation of the particularities of [CO2] (over 20 years) and temperature (over 60 years) for one city (CO2 source). Daily and yearly courses are shown, and reasons for oscillations are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Augustin L, Barbante C, Barnes PRF, Barnola J-M, Bilger M, Castellano E et al (2004) Eight glacial cycles from an Antarctic ice core. Nature 429:623–628

    Article  CAS  PubMed  Google Scholar 

  • Bonan GB (2008) Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320:1444–1449

    Article  CAS  PubMed  Google Scholar 

  • Collins MR, Knutti R, Arblaster J, Dufresne J-L, Fichefet T, Friedlingstein P et al (2013) Long-term climate change: projections, commitments and irreversibility. In: Stocker TF, Qin G-K, Plattner M, Tignor M, Allen SK et al (eds) Climate change 2013. The physical science base. Contribution of the working group I of the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 1029–1136

    Google Scholar 

  • Etheridge DM, Steele LP, Langenfelds RI, Francey RJ, Barnola J-M, Morgan VI (1996) Natural and anthropogenic changes in atmospheric CO2 over the last 1000 years from air in Antarctic ice and firn. J Geophys Res 101(D2):4115–4128

    Article  CAS  Google Scholar 

  • Forstreuter M, Tschuschke A, Overdieck D (1994) Atmospheric CO2 record from Osnabrück. In: Boden TA, Kaiser DP, Sepanski RJ, Stoss E (eds) Trends’93: a compendium of data on global change, ORNL/CDIAC-65. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, pp 157–160

    Google Scholar 

  • Godlewski E (1873) Abhängigkeit der Sauerstoffausscheidung der Blätter von dem Kohlensäuregehalt der Luft. Arbeiten des Botanischen Instituts in Würzburg XI:343–370 (in German)

    Google Scholar 

  • Hartmann DL, Klein Tank AMG, Rusticucci M, Alexander LV, Brönnimann S, Charabi Y et al (2013) Observations: atmosphere and surface. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J et al (eds) The physical science basis. Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, New York, pp 161–218

    Google Scholar 

  • Indermühle A, Stocker TF, Joos F, Fischer H, Smith HJ, Wahlen M et al (1999) Holocene carbon-cycle dynamics based on CO2 trapped in ice at Taylor Dome, Antarctica. Nature 398:121–126

    Article  Google Scholar 

  • IPCC (2007) Climate change. In: Solomon S, Qin D, Manning M, Chen Z, Marqius M, Averyt K, Tignor MMB, Miller HL (eds) The physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 1–996

    Google Scholar 

  • IPCC (2013) Climate change. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) The physical science basis. Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 1–1535

    Google Scholar 

  • Kaplan JO, New M (2006) Arctic climate change with a 2 °C global warming: timing, climate patterns and vegetation change. Climate Change 79:213–241

    Article  CAS  Google Scholar 

  • Keeling CD, Whorf TP (1992) Mauna Loa record. In: Boden TA, Sepanski RJ, Stoss FW (eds) Trends’91. A compendium of data on global change. Highlights. Carbon Dioxide Information Center, Oak Ridge National Laboratory, Oak Ridge, pp 14–17

    Google Scholar 

  • Keeling CD, Bacastow R, Bainbridge A, Ekdahl C, Guenther P, Waterman L, Chin J (1976a) Atmospheric carbon-dioxide variations at the Mauna-Loa observatory, Hawaii. Tellus 28:538–551

    Article  CAS  Google Scholar 

  • Keeling CD, Adams JA, Ekdahl CA (1976b) Atmospheric carbon-dioxide variations at South Pole. Tellus 28:553–564

    Google Scholar 

  • Körner C (2006) Plant CO2 responses: an issue of definition, time and resource supply. Tansley review. New Phytol 172:393–411

    Article  PubMed  Google Scholar 

  • Long SP, Ainsworth EA, Rogers A, Ort DR (2004) Rising atmospheric carbon dioxide: plants face the future. Annu Rev Plant Biol 55:591–628

    Article  CAS  PubMed  Google Scholar 

  • Monnin E, Indermühle A, Dellenbach A, Flückiger J, Stauffer B, Socker TF, Raynaud D, Barnola J-M (2001) Atmospheric CO2 concentration over the last glacial termination. Science 291:112–114

    Article  CAS  PubMed  Google Scholar 

  • Petit JR, Jouzel J, Raynaud D, Barkov NI, Barnola J-M, Basile I et al (1999) Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399:429–436

    Article  CAS  Google Scholar 

  • Possel M, Hewitt CN (2009) Gas exchange and photosynthetic performance of the tropical tree Acacia nigrescens when grown in different CO2 concentrations. Planta 229:837–846

    Article  Google Scholar 

  • Tans P (2009) An accounting of the observed increase in oceanic and atmospheric CO2 and an outlook for the future. Oceanography 22:26–35

    Article  Google Scholar 

  • Ward JK, Strain BR (1999) Elevated CO2 studies: past, present and future. Tree Physiol 19:211–220

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Overdieck, D. (2016). Introduction. In: CO2, Temperature, and Trees. Ecological Research Monographs. Springer, Singapore. https://doi.org/10.1007/978-981-10-1860-2_1

Download citation

Publish with us

Policies and ethics