Skip to main content

Factors Affecting Flowering Seasonality

  • Chapter
  • First Online:
  • 3624 Accesses

Abstract

Environmental regulation of flowering seasonality and set seed is critical for this survival as it allows seeds to develop in the most favourable conditions. Recent genetic and molecular approaches provide a basis for understanding how plants use seasonal changes in natural daylight duration and temperature to achieve reproducible timing of flowering. Recent studies have led to the identification of members of the FLOWERING LOCUS T (FT) in Arabidopsis, and its orthologs in several plant species act as florigen. In addition to the floral inducer florigen, the systemic floral inhibitor anti-florigen, anti-florigenic FT/TFL1 family protein (AFT), has been identified from a wild chrysanthemum and plays a predominant role in the obligate photoperiodic response. In Arabidopsis, the molecular basis for vernalization process has been revealed. The key factor in the vernalization pathway is a repressor of flowering, FLOWERING LOCUS C (FLC). In temperate cereals that require vernalization to flower, three genes possibly participate in a regulatory loop to control the timing of flowering, namely, VRN1, VRN2, and VRN3. VRN2 is a key factor for flowering repression in winter varieties.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abe M, Kobayashi Y, Yamamoto S et al (2005) FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science 309:1052–1056

    Article  CAS  PubMed  Google Scholar 

  • Bradley D, Ratcliffe O, Vincent C et al (1997) Inflorescence commitment and architecture in Arabidopsis. Science 275:80–83

    Article  CAS  PubMed  Google Scholar 

  • Büning E (1936) Die endogene tagesrhythmik als grundlage der photoperiodischen reaktion. Ber Dtsch Bot Ges 54:590–607

    Google Scholar 

  • Cathey H, Borthwick H (1957) Photoreversibility of floral initiation in Chrysanthemum. Bot Gaz 119:71–76

    Article  Google Scholar 

  • Chailakhyan M (1936) New facts in support of the hormonal theory of plant development. Dokl Akad Nauk SSSR 13:79–83

    Google Scholar 

  • Chen A, Dubcovsky J (2012) Wheat TILLING mutants show that the vernalization gene VRN1 down-regulates the flowering repressor VRN2 in leaves but is not essential for flowering. PLoS Genet 8(12):e1003134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conti L, Bradley D (2007) TERMINAL FLOWER 1 is a mobile signal controlling Arabidopsis architecture. Plant Cell 19:767–778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corbesier L, Vincent C, Jang S et al (2007) FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science 316:1030–1033

    Article  CAS  PubMed  Google Scholar 

  • Doi K, Izawa T, Fuse T et al (2004) Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1. Genes Dev 18:926–936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dubcovsky J, Loukoianov A, Fu D et al (2006) Effect of photoperiod on the regulation of wheat vernalization genes VRN1 and VRN2. Plant Mol Biol 60:469–480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evans L (1960) Inflorescence initiation in Lolium temulentum L. II. Evidence for inhibitory and promotive photoperiodic processes involving transmissible products. Aust J Biol Sci 13:429–440

    Article  Google Scholar 

  • Fornara F, Panigrahi K, Gissot L et al (2009) Arabidopsis DOF transcription factors act redundantly to reduce CONSTANS expression and are essential for a photoperiodic flowering response. Dev Cell 17:75–86

    Article  CAS  PubMed  Google Scholar 

  • Garner W, Allard H (1920) Effect of the relative length of day and night and other factors of the environment on growth and reproduction in plants. J Agric Res 18:553–606

    Google Scholar 

  • Greenham K, McClung C (2015) Integrating circadian dynamics with physiological processes in plants. Nat Rev Genet 16:598–610

    Article  CAS  PubMed  Google Scholar 

  • Guttridge C (1959) Further evidence for a growth-promoting and flower-inhibiting hormone in strawberry. Ann Bot 23:612–621

    Google Scholar 

  • Hayama R, Yokoi S, Tamaki S et al (2003) Adaptation of photoperiodic control pathways produces short-day flowering in rice. Nature 422:719–722

    Article  CAS  PubMed  Google Scholar 

  • Hayama R, Aagashe B, Luley E et al (2007) A circadian rhythm set by dusk determines the expression of FT homologs and the short-day photoperiodic flowering response in Pharbitis. Plant Cell 19:2988–3000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heide O, Stavang J, Sønsteby A (2013) Physiology and genetics of flowering in cultivated and wild strawberries. J HortScience Biotechnol 88:1–18

    Google Scholar 

  • Hepworth J, Dean C (2015) Flowering locus C’s lessons: conserved chromatin switches underpinning developmental timing and adaptation. Plant Physiol 168:1237–1245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Higuchi Y, Hisamatsu T (2015) CsTFL1, a constitutive local repressor of flowering, modulates floral initiation by antagonising florigen complex activity in chrysanthemum. Plant Sci 237:1–7

    Article  CAS  PubMed  Google Scholar 

  • Higuchi Y, Sage-Ono K, Sasaki R et al (2011) Constitutive expression of the GIGANTEA ortholog affects circadian rhythms and suppresses one-shot induction of flowering in Pharbitis nil, a typical short-day plant. Plant Cell Physiol 52:638–650

    Article  CAS  PubMed  Google Scholar 

  • Higuchi Y, Sumitomo K, Oda A et al (2012) Day light quality affects the night-break response in the short-day plant chrysanthemum, suggesting differential phytochrome-mediated regulation of flowering. J Plant Physiol 169:1789–1796

    Article  CAS  PubMed  Google Scholar 

  • Higuchi Y, Narumi T, Oda A et al (2013) The gated induction system of a systemic floral inhibitor, antiflorigen, determines obligate short-day flowering in chrysanthemums. Proc Natl Acad Sci U S A 110:17137–17142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imaizumi T, Schultz T, Harmon F et al (2005) FKF1 F-box protein mediates cyclic degradation of a repressor of CONSTANS in Arabidopsis. Science 309:293–297

    Article  CAS  PubMed  Google Scholar 

  • Imamura S (1967) Physiology of flowering in Pharbitis nil. Japanese Society of Plant Physiologist, Tokyo

    Google Scholar 

  • Ishikawa R, Tamaki S, Yokoi S et al (2005) Suppression of the floral activator Hd3a is the principal cause of the night break effect in rice. Plant Cell 17:3326–3336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Itoh H, Nonoue Y, Yano M et al (2010) A pair of floral regulators sets critical day length for Hd3a florigen expression in rice. Nat Genet 42:635–638

    Article  CAS  PubMed  Google Scholar 

  • Iwata H, Gaston A, Remay A et al (2012) The TFL1 homologue KSN is a regulator of continuous flowering in rose and strawberry. Plant J 69:116–125

    Article  CAS  PubMed  Google Scholar 

  • Izawa T, Oikawa T, Tokutomi S et al (2000) phytochromes confer the photoperiodic control of flowering in rice (a short-day plant). Plant J 22:391–399

    Article  CAS  PubMed  Google Scholar 

  • Izawa T, Oikawa T, Sugiyama N et al (2002) Phytochrome mediates the external light signal to repress FT orthologs in photoperiodic flowering of rice. Genes Dev 16:2006–2020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaeger K, Pullen N, Lamzin S et al (2013) Interlocking feedback loops govern the dynamic behavior of the floral transition in Arabidopsis. Plant Cell 25:820–833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kardailsky I, Shukla V, Ahn J et al (1999) Activation tagging of the floral inducer FT. Science 286:1962–1965

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi Y, Kaya H, Goto K et al (1999) A pair of related genes with antagonistic roles in mediating flowering signals. Science 286:1960–1962

    Article  CAS  PubMed  Google Scholar 

  • Komiya R, Yokoi S, Shimamoto K (2009) A gene network for long-day flowering activates RFT1 encoding a mobile flowering signal in rice. Development 136:3443–3450

    Article  CAS  PubMed  Google Scholar 

  • Koskela EA, Mouhu K, Albani M et al (2012) Mutation in TERMINAL FLOWER 1 reverses the photoperiodic requirement for flowering in the wild strawberry Fragaria vesca. Plant Physiol 159:1043–1054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lang A (1957) The effect of gibberellin upon flower formation. Proc Natl Acad Sci U S A 43:709–717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lang A, Melchers G (1943) Die photoperiodische reaktion von Hyoscyamus niger (in German). Planta 33:653–702

    Article  CAS  Google Scholar 

  • Lang A, Chailakhyan M, Frolova I (1977) Promotion and inhibition of flower formation in a day neutral plant in grafts with a short-day plant and a long-day plant. Proc Natl Acad Sci U S A 74:2412–2416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lees A (1973) Photoperiodic time measurement in the aphid Megoura viciae. J Insect Physiol 19:2279–2316

    Article  Google Scholar 

  • Li C, Dubcovsky J (2008) Wheat FT protein regulates VRN1 transcription through interactions with FDL2. Plant J 55:543–554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lifschitz E, Eviatar T, Rozman A et al (2006) The tomato FT ortholog triggers systemic signals that regulate growth and flowering and substitute for diverse environmental stimuli. Proc Natl Acad Sci U S A 103:6398–6403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin M, Belanger H, Lee Y et al (2007) FLOWERING LOCUS T protein may act as the long-distance florigenic signal in the cucurbits. Plant Cell 19:1488–1506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Yu J, McIntosh L et al (2001) Isolation of a CONSTANS ortholog from Pharbitis nil and its role in flowering. Plant Physiol 125:1821–1830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacMillan C, Blundell C, King R (2005) Flowering of the grass Lolium perenne L.: effects of vernalization and long days on gibberellin biosynthesis and signalling. Plant Physiol 138:1794–1806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsoukas I (2015) Florigens and antiflorigens: a molecular genetic understanding. Essays Biochem 58:133–149

    Article  PubMed  Google Scholar 

  • Mouhu K, Kurokura T, Koskela E et al (2013) The Fragaria vesca homolog of SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 represses flowering and promotes vegetative growth. Plant Cell 25:3296–3310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakano Y, Higuchi Y, Sumitomo K et al (2013) Flowering retardation by high temperature in chrysanthemums: involvement of FLOWERING LOCUS T-like 3 gene expression. J Exp Bot 64:909–920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakano Y, Higuchi Y, Yoshida Y et al (2015) Environmental responses of the FT/TFL1 gene family and their involvement in flower induction in Fragaria × ananassa. J Plant Physiol 177:60–66

    Article  CAS  PubMed  Google Scholar 

  • Nelson R, Denlinger D, Somers D (2010) Photoperiodism: the biological calendar. Oxford University Press, New York

    Google Scholar 

  • Oda A, Narumi T, Li T et al (2012) CsFTL3, a chrysanthemum FLOWERING LOCUS T-like gene, is a key regulator of photoperiodic flowering in chrysanthemums. J Exp Bot 63:1461–1477

    Article  CAS  PubMed  Google Scholar 

  • Ogawa Y, King R (1990) The inhibition of flowering by non-induced cotyledons of Pharbitis nil. Plant Cell Physiol 31:129–135

    Google Scholar 

  • Ogiso-Tanaka E, Matsubara K, Yamamoto S et al (2013) Natural variation of the RICE FLOWERING LOCUS T 1 contributes to flowering time divergence in rice. PLoS One 8:e75959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oliver S, Finnegan J, Dennis E et al (2009) Vernalization-induced flowering in cereals is associated with changes in histone methylation at the VERNALIZATION1 gene. Proc Natl Acad Sci U S A 106(20):8386–8391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park S, Jiang K, Tal L et al (2014) Optimization of crop productivity in tomato using induced mutations in the florigen pathway. Nat Genet 46:1337–1342

    Article  CAS  PubMed  Google Scholar 

  • Pin P, Benlloch R, Bonnet D et al (2010) An antagonistic pair of FT homologs mediates the control of flowering time in sugar beet. Science 330:1397–1400

    Article  CAS  PubMed  Google Scholar 

  • Pittendrigh C (1972) Circadian surfaces and the diversity of possible roles of circadian organization in photoperiodic induction. Proc Natl Acad Sci U S A 69:2734–2737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pittendrigh C, Minis D (1964) The entrainment of circadian oscillations by light and their role as photoperiodic clocks. Am Nat 108:261–295

    Article  Google Scholar 

  • Rantanen M, Kurokura T, Mouhu K et al (2014) Light quality regulates flowering in FvFT1/FvTFL1 dependent manner in the woodland strawberry Fragaria vesca. Front Plant Sci 5:271

    Article  PubMed  PubMed Central  Google Scholar 

  • Rantanen M, Kurokura T, Jiang P et al (2015) Strawberry homologue of TERMINAL FLOWER 1 integrate photoperiod and temperature signals to inhibit flowering. Plant J 82:163–173

    Article  CAS  PubMed  Google Scholar 

  • Ratcliffe O, Bradley D, Coen E (1999) Separation of shoot and floral identity in Arabidopsis. Development 126:1109–1120

    CAS  PubMed  Google Scholar 

  • Sawa M, Nusinow D, Kay S et al (2007) FKF1 and GIGANTEA complex formation is required for day-length measurement in Arabidopsis. Science 318:261–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shalit A, Rozman A, Goldshmidt A et al (2009) The flowering hormone florigen functions as a general systemic regulator of growth and termination. Proc Natl Acad Sci U S A 106:8392–8397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song Y, Shim J, Kinmouth-Schltz H et al (2015) Photoperiodic flowering: time measurement mechanisms in leaves. Annu Rev Plant Biol 66:441–464

    Article  CAS  PubMed  Google Scholar 

  • Sumitomo K, Higuchi Y, Aoki K et al (2012) Spectral sensitivity of flowering and FT-like gene expression in response to a night break treatment in the chrysanthemum cultivar ‘Reagan’. J HortScience Biotechnol 87:461–469

    Google Scholar 

  • Sung S, Amasino R (2004) Vernalization in Arabidopsis thaliana is mediated by the PHD finger protein VIN3. Nature 427:159–164

    Article  CAS  PubMed  Google Scholar 

  • Takano M, Inagaki N, Xie X et al (2009) Phytochromes are the sole photoreceptors for perceiving red/far-red light in rice. Proc Natl Acad Sci U S A 106:14705–14710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamaki S, Matsuo S, Wong H et al (2007) Hd3a protein is a mobile flowering signal in rice. Science 316:1033–1036

    Article  CAS  PubMed  Google Scholar 

  • Tanaka T (1967) Studies on the regulation of Chrysanthemum flowering with special reference to plant regulators I. The inhibiting action of non-induced leaves on floral stimulus. J Jpn Soc HortScience 36:77–85

    Google Scholar 

  • Taoka K, Ohki I, Tsuji H et al (2011) 14-3-3 proteins act as intracellular receptors for rice Hd3a florigen. Nature 476:332–335

    Article  CAS  PubMed  Google Scholar 

  • Thomas B, Vince-Prue B (1997) Photoperiodism in plants, 2nd edn. Academic, London

    Google Scholar 

  • Trevaskis B, Hemming M, Peacock J et al (2006) HvVRN2 responds to daylength, whereas HvVRN1 is regulated by vernalization and developmental status. Plant Physiol 140:1397–1405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trevaskis B, Hemming M, Dennis E et al (2007) The molecular basis of vernalization-induced flowering in cereals. Trends Plant Sci 12:352–357

    Article  CAS  PubMed  Google Scholar 

  • Valverde F, Mouradov A, Soppe W et al (2004) Photoreceptor regulation of CONSTANS protein in photoperiodic flowering. Science 303:965–966

    Article  CAS  Google Scholar 

  • Wickland D, Hanzawa Y (2015) The FLOWERING LOCUS T/TERMINAL FLOWER 1 gene family: functional evolution and molecular mechanisms. Mol Plant 8:983–997

    Article  CAS  PubMed  Google Scholar 

  • Wigge PA, Kim M, Jaeger K et al (2005) Integration of spatial and temporal information during floral induction in Arabidopsis. Science 309:1056–1059

    Article  CAS  PubMed  Google Scholar 

  • Xue W, Xing Y, Weng X et al (2008) Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet 40:761–767

    Article  CAS  PubMed  Google Scholar 

  • Yan L, Loukoianov A, Blechl A et al (2004) The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science 303:1640–1644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yanovsky M, Kay S (2002) Molecular basis of seasonal time measurement in Arabidopsis. Nature 419:308–312

    Article  CAS  PubMed  Google Scholar 

  • Zeevaart J (2008) Leaf-produced floral signals. Curr Opin Plant Biol 11:541–547

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamotsu Hisamatsu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Higuchi, Y., Hisamatsu, T. (2016). Factors Affecting Flowering Seasonality. In: Kozai, T., Fujiwara, K., Runkle, E. (eds) LED Lighting for Urban Agriculture. Springer, Singapore. https://doi.org/10.1007/978-981-10-1848-0_6

Download citation

Publish with us

Policies and ethics