Skip to main content

Light Acts as a Signal for Regulation of Growth and Development

  • Chapter
  • First Online:
LED Lighting for Urban Agriculture

Abstract

Plants utilise light not only for photosynthesis but also as a signal to regulate optimal growth and development throughout their life cycle. The light quality (spectral composition), amount, direction and duration change depending on the season, latitude and local conditions. Therefore, to adapt to diverse light conditions, plants have evolved unique photoreceptor systems to mediate light responses to a broad range of wavelengths from ultraviolet-B to far-red light. Light signals can regulate changes in structure and form, such as seed germination, de-etiolation, leaf expansion, phototropism, neighbour avoidance, stem elongation, flower initiation and pigment synthesis. Plant hormones and transcriptional factors play an important role in the internal signalling that mediates light-regulated processes of development. Plants rely on their circadian clock to modify their growth and development in anticipation of predictable changes in environmental light and temperature conditions. The light signals perceived by photoreceptors affect the circadian clock and directly activate the induction of the light responses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad M, Cashmore A (1993) HY4 gene of A. thaliana encodes a protein with characteristics of a blue-light photoreceptor. Nature 366:162–166

    Article  CAS  PubMed  Google Scholar 

  • Barbosa I, Zourelidu M, Willige B et al (2014) D6 PROTEIN KINASE activates auxin transport-dependent growth and PIN-FORMED phosphorylation at the plasma membrane. Dev Cell 29:674–685

    Article  CAS  PubMed  Google Scholar 

  • Borthwick H, Hendricks S, Parker M et al (1952) A reversible photoreaction controlling seed germination. Proc Natl Acad Sci U S A 38:662–666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Briggs W, Christie J (2002) Phototropins 1 and 2: versatile plant blue-light receptor. Trends Plant Sci 7:204–210

    Article  CAS  PubMed  Google Scholar 

  • Butler W, Norris K, Siegelman H et al (1959) Detection, assay, and preliminary purification of the pigment controlling photoresponsive development of plants. Proc Natl Acad Sci U S A 45:1703–1708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casal J (2013) Photoreceptor signaling networks in plant responses to shade. Ann Rev Plant Biol 64:403–427

    Article  CAS  Google Scholar 

  • Casal J, Sanchez R, Botto J (1998) Modes of action of phytochromes. J Exp Bot 49:127–138

    CAS  Google Scholar 

  • Christie J (2007) Phototropin blue-light receptors. Annu Rev Plant Biol 58:21–45

    Article  CAS  PubMed  Google Scholar 

  • Christie J, Blackwood L, Petersen J et al (2015) Plant flavoprotein photoreceptors. Plant Cell Physiol 56:401–413

    Article  CAS  PubMed  Google Scholar 

  • Clack T, Mathews S, Sharrock R (1994) The phytochrome apoprotein family in Arabidopsis is encoded by five genes: the sequences and expression of PHYD and PHYE. Plant Mol Biol 25:413–427

    Article  CAS  PubMed  Google Scholar 

  • Fankhauser C, Casal J (2004) Phenotypic characterization of a photomorphogenic mutant. Plant J 39:747–760

    Article  CAS  PubMed  Google Scholar 

  • Franklin K (2008) Shade avoidance. New Phytol 179:930–944

    Article  CAS  PubMed  Google Scholar 

  • Franklin K, Quail P (2010) Phytochrome functions in Arabidopsis development. J Exp Bot 61:11–24

    Article  CAS  PubMed  Google Scholar 

  • Franklin K, Davis S, Stoddart W et al (2003) Mutant analyses define multiple roles for phytochrome C in Arabidopsis photomorphogenesis. Plant Cell 15:1981–1989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frigerio M, Alabadi D, Pérez-Gómez J et al (2006) Transcriptional regulation of gibberellin metabolism genes by auxin signaling in Arabidopsis. Plant Physiol 142:553–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goto N, Kumagai T, Koornneef M (1991) Flowering responses to light-breaks in photomorphogenic mutants of Arabidopsis thaliana, a long day plant. Physiol Plant 83:209–215

    Article  Google Scholar 

  • Greenham K, McClung C (2015) Integrating circadian dynamics with physiological processes in plants. Nat Rev Genet 16:598–610

    Article  CAS  PubMed  Google Scholar 

  • Haga K, Sakai T (2012) PIN auxin efflux carriers are necessary for pulse-induced but not continuous light-induced phototropism in Arabidopsis. Plant Physiol 160:763–776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamner K, Takimoto A (1964) Circadian rhythms and plant photoperiodism. Am Nat (Am Nat) 98:295–322

    Article  Google Scholar 

  • Hedden P, Thomas S (2012) Gibberellin biosynthesis and its regulation. Biochem J 444:11–25

    Article  CAS  PubMed  Google Scholar 

  • Hicks K, Millar A, Carré I et al (1996) Conditional circadian dysfunction of the Arabidopsis early-flowering 3 mutant. Science 274:790–792

    Article  CAS  PubMed  Google Scholar 

  • Higuchi Y, Narumi T, Oda A et al (2013) The gated induction system of a systemic floral inhibitor, antiflorigen, determines obligate short-day flowering in chrysanthemums. Proc Natl Acad Sci U S A 110:17137–17142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hisamatsu T, King R (2008) The nature of floral signals in Arabidopsis. II. Roles for FLOWERING LOCUS T (FT) and gibberellin. J Exp Bot 59:3821–3829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hisamatsu T, King R, Helliwell C et al (2005) The involvement of gibberellin 20-oxidase genes in phytochrome-regulated petiole elongation of Arabidopsis. Plant Physiol 138:1106–1116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsu P, Harmer S (2014) Wheels within wheels: the plant circadian system. Trends Plant Sci 19:240–249

    Article  CAS  PubMed  Google Scholar 

  • Huala E, Oeller P, Liscum E et al (1997) Arabidopsis NPH1: a protein kinase with a putative redox-sensing domain. Science 278:2120–2123

    Article  CAS  PubMed  Google Scholar 

  • Ito S, Song Y, Imaizumi T (2012) LOV domain-containing F-box proteins: light-dependent protein degradation modules in Arabidopsis. Mol Plant 5:573–582

    Article  CAS  PubMed  Google Scholar 

  • Johnson E, Bradley M, Harberd N et al (1994) Photoresponses of light-grown phyA mutants of Arabidopsis (phytochrome A is required for the perception of daylength extensions). Plant Physiol 105:141–149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kagawa T, Sakai T, Suetsugu N et al (2001) Arabidopsis NPL1: a phototropin homolog controlling the chloroplast high-light avoidance response. Science 291:2138–2141

    Article  CAS  PubMed  Google Scholar 

  • Kasperbauer M (1971) Spectral distribution of light in a tobacco canopy and effects of end-of-day light quality on growth and development. Plant Physiol 47:775–558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim W, Fujiwara S, Suh S et al (2007) ZEITLUPE is a circadian photoreceptor stabilized by GIGANTEA in blue light. Nature 449:356–360

    Article  CAS  PubMed  Google Scholar 

  • Kim D, Yamaguchi S, Lim S et al (2008) SOMNUS, a CCCH-type zinc finger protein in Arabidopsis, negatively regulates light-dependent seed germination downstream of PIL5. Plant Cell 20:1260–1277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kozuka T, Kobayashi J, Horiguchi G et al (2010) Involvement of auxin and brassinosteroid in the regulation of petiole elongation under the shade. Plant Physol 153:1608–1618

    Article  CAS  Google Scholar 

  • Leivar P, Quail P (2011) PIFs: pivotal components in a cellular signaling hub. Trends Plant Sci 16:19–28

    Article  CAS  PubMed  Google Scholar 

  • Li J, Li G, Wang H et al (2011) Phytochrome signaling mechanisms. Arabidopsis Book 9:e0148

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin C, Yang H, Guo H et al (1998) Enhancement of blue-light sensitivity of Arabidopsis seedlings by a blue light receptor cryptochrome 2. Proc Natl Acad Sci U S A 95:2686–2690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liscum E, Askinosie S, Leuchtman D et al (2014) Phototropism: growing towards an understanding of plant movement. Plant Cell 26:38–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lorrain S, Allen T, Duek P et al (2008) Phytochrome-mediated inhibition of shade avoidance involved degradation of growth-promoting bHLH transcription factors. Plant J 53:312–323

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Garcia J, Gallemi M, Molina-Contreras M et al (2014) The shade avoidance syndrome in Arabidopsis: the antagonistic role of phytochrome A and B differentiates vegetation proximity and canopy shade. PLoS One 9(10):e109275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Más P, Kim W, Somers D et al (2003) Targeted degradation of TOC1 by ZTL modulates circadian function in Arabidopsis thaliana. Nature 426:567–570

    Article  CAS  PubMed  Google Scholar 

  • McWatters H, Bastow R, Hall A et al (2000) The ELF3 zeitnehmer regulates light signaling to the circadian clock. Nature 408:716–720

    Article  CAS  PubMed  Google Scholar 

  • Millar A, Kay S (1996) Integration of circadian and phototransduction pathways in the network controlling CAB gene transcription in Arabidopsis. Proc Natl Acad Sci U S A 93:15491–15496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mockler T, Yang H, Yu X et al (2003) Regulation of photoperiodic flowering by Arabidopsis photoreceptors. Proc Natl Acad Sci U S A 100:2140–2145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monte E, Alonso J, Ecker J et al (2003) Isolation and characterization of phyC mutants in Arabidopsis reveals complex cross-talk between phytochrome signalling pathways. Plant Cell 15:1962–1980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nozue K, Covington M, Duek P et al (2007) Rhythmic growth explained by coincidence between internal and external cues. Nature 448:358–361

    Article  CAS  PubMed  Google Scholar 

  • Nusinow D, Helfer A, Hamilton E et al (2011) The ELF4–ELF3–LUX complex links the circadian clock to diurnal control of hypocotyl growth. Nature 475:398–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oh E, Yamaguchi S, Kamiya Y et al (2006) Light activates the degradation of PIL5 protein to promote seed germination through gibberellin in Arabidopsis. Plant J 47:124–139

    Article  CAS  PubMed  Google Scholar 

  • Ohtani T, Kumagai T (1980) Spectral sensitivity of the flowering response in green and etiolated Lemna paucicostata T-101. Plant Cell Physiol 21:1335–1338

    Google Scholar 

  • Procko C, Crenshaw C, Ljung K et al (2014) Cotyledon-generated auxin is required for shade-induced hypocotyl growth in Brassica rapa. Plant Physol 165:1285–1301

    Article  CAS  Google Scholar 

  • Rizzini L, Favory J, Cloix C et al (2011) Perception of UV-B by the Arabidopsis UVR8 protein. Science 332:103–106

    Article  CAS  PubMed  Google Scholar 

  • Sager J, Smith W, Edwards J et al (1988) Photosynthetic efficiency and phytochrome photoequilibria determination using spectral data. Trans Am Soc Agric Eng 31:1882–1889

    Article  Google Scholar 

  • Sawa M, Nusinow D, Kay S et al (2007) FKF1 and GIGANTEA complex formation is required for day-length measurement in Arabidopsis. Science 318:261–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seo M, Nambara E, Choi G et al (2009) Interaction of light and hormone signals in germinating seeds. Plant Mol Biol 69:463–472

    Article  CAS  PubMed  Google Scholar 

  • Sharrock R, Clack T (2002) Patterns of expression and normalized levels of the five Arabidopsis phytochromes. Plant Physiol 130:442–456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shinomura T, Nagatani A, Hanzawa H et al (1996) Action spectra for phytochrome A- and B-specific photoinduction of seed germination in Arabidopsis thaliana. Proc Natl Acad Sci U S A 93:8129–8133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sumitomo K, Higuchi Y, Aoki K et al (2012) Spectral sensitivity of flowering and FT-like gene expression in response to a night break treatment in the chrysanthemum cultivar ‘Reagan’. J HortScience Biotech 87:461–469

    Google Scholar 

  • Sun T-p (2011) The molecular mechanism and evolution of the GA–GID1–DELLA signaling module in plants. Curr Biol 21:338–345

    Article  CAS  Google Scholar 

  • Tilbrook K, Arongaus A, Binkert M et al (2013) The UVR8 UV-B photoreceptor: perception, signaling and response. Arabidopsis Book 11:e0164

    Article  PubMed  PubMed Central  Google Scholar 

  • Valverde F, Mouradov A, Soppe W et al (2004) Photoreceptor regulation of CONSTANS protein in photoperiodic flowering. Science 303:965–966

    Article  CAS  Google Scholar 

  • Whippo C, Hangarter R (2006) Phototropism: bending towards enlightenment. Plant Cell 18:1110–1119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Willige B, Ahiers S, Zourelidu M et al (2013) D6PK AGCVIII kinases are required for auxin transport and phototropic hypocotyl bending in Arabidopsis. Plant Cell 25:1674–1688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yanovsky M, Kay S (2002) Molecular basis of seasonal time measurement in Arabidopsis. Nature 419:308–312

    Article  CAS  PubMed  Google Scholar 

  • Yu X, Liu H, Klejnot J et al (2010) The cryptochrome blue light receptors. Arabidopsis Book 8:e0135

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamotsu Hisamatsu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Higuchi, Y., Hisamatsu, T. (2016). Light Acts as a Signal for Regulation of Growth and Development. In: Kozai, T., Fujiwara, K., Runkle, E. (eds) LED Lighting for Urban Agriculture. Springer, Singapore. https://doi.org/10.1007/978-981-10-1848-0_5

Download citation

Publish with us

Policies and ethics