Skip to main content

Lighting Efficiency in Plant Production Under Artificial Lighting and Plant Growth Modeling for Evaluating the Lighting Efficiency

  • Chapter
  • First Online:
LED Lighting for Urban Agriculture

Abstract

As it is critical that plant growers improve the efficiency of their lighting when it uses artificial lighting, the lighting efficiency should be evaluated properly. One possible way to evaluate the lighting efficiency is to compare the amount of biomass produced per unit of energy used to irradiate the plants. A simpler index uses the fraction of the light energy or photons received by plants. Lighting efficiency can also be evaluated from the viewpoint of how much the irradiance/photon flux density on leaf surfaces can be improved. It is useful to obtain information of canopy structure or leaf spatial distribution in addition to determining plant mass (dry weight, fresh weight, or LAI) increments for evaluating the lighting efficiency. Modeling leaf growth and development can be used for this purpose.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aikman DP, Scaife A (1993) Modelling plant growth under varying environmental conditions in a uniform canopy. Ann Bot 72:485–492

    Article  Google Scholar 

  • Biskup B, Scharr H, Schurr U et al (2007) A stereo imaging system for measuring structural parameters of plant canopies. Plant Cell Environ 30:1299–1308

    Article  PubMed  Google Scholar 

  • Bornwaβer T, Tantau HJ (2012) Evaluation of LED lighting system in in vitro cultures. Acta Hortic 956:555–560

    Article  Google Scholar 

  • de Visser PHB, Buck-Sorlin GH, van der Heijden GWAM et al (2012) A 3D model of illumination, light distribution and crop photosynthesis to simulate lighting strategies in greenhouses. Acta Hortic 956:195–200

    Article  Google Scholar 

  • de Visser PHB, Buck-Sorlin GH, van der Heijden GWAM (2014) Optimizing illumination in the greenhouse using a 3D model of tomato and a ray tracer. Front Plant Sci 5(48):1–7

    Google Scholar 

  • Dennett MD, Ishag KHM (1998) Use of the expolinear model to analyse the growth of faba bean, peas and lentils at three densities: predictive use of the model. Ann Bot 82:507–512

    Article  Google Scholar 

  • Dorais M (2003) The use of supplemental lighting for vegetable crop production: light intensity, crop response, nutrition, crop management, cultural practices. Canadian Greenhouse Conference, 9 Oct 2003, Toronto http://www.agrireseau.qc.ca/legumesdeserre/Documents/CGC-Dorais2003fin2.PDF. Accessed on 25 Dec 2015

  • Fournier C, Andrieu B (1998) A 3D architectural and process-based model of maize development. Ann Bot 81:233–250

    Article  Google Scholar 

  • Fukuda N, Nishimura S, Fumiki Y (2004) Effect supplemental lighting during the period from middle of night to morning on photosynthesis and leaf thickness of lettuce (Lactuca sativa L.) and tsukena (Brassica campestris L.). Acta Hortic 633:237–244

    Article  Google Scholar 

  • Gitelson AA, Gamon JA (2015) The need for a common basis for defining light-use efficiency: implications for productivity estimation. Remote Sens Environ 156:196–201

    Article  Google Scholar 

  • Godin C, Sinoquet H (2005) Functional-structural plant modeling. New Phytol 166:705–708

    Article  PubMed  Google Scholar 

  • Goudriaan J, Monteith JL (1990) A mathematical function for crop growth based on light interception and leaf area expansion. Ann Bot 66:695–701

    Google Scholar 

  • Hosoi F, Omasa K (2009) Estimating vertical leaf area density profiles of tree canopies using three-dimensional portable lidar imaging. In: Bretar F et al (eds) Laser scanning, vol XXXVIII, Part 3/W8. IAPRS, France, pp 152–157

    Google Scholar 

  • Ibaraki Y, Shigemoto C (2013) Estimation of supplemental lighting efficiency based on PPFD distribution on the canopy surface. J Agric Meteorol 69:47–54

    Article  Google Scholar 

  • Javanovic NZ, Annandale JG, Mhlauli NC (1999) Field water balance and SWB parameter determination of six winter vegetation species. Water SA 25:191–196

    Google Scholar 

  • Kaitaniemi P, Hanan JS, Room PM (2000) Virtual sorghum: visualisation of partitioning and morphogenesis. Comput Electron Agric 28:195–205

    Article  Google Scholar 

  • Kozai T (2013) Resource use efficiency of closed plant production system with artificial light: concept, estimation and application to plant factory. Proc Jpn Acad Ser B Phys Biol Sci 89:447–461

    Article  PubMed  PubMed Central  Google Scholar 

  • Lindenmayer A (1968) Mathematical models for cellular interaction in development, I and II. J Theor Biol 18:280–315

    Article  CAS  PubMed  Google Scholar 

  • Lubkin S (1995) Book review of phyllotaxis: a systemic study in plant morphogenesis (Jean RV, 1994). Bull Math Biol 57:377–379

    Article  Google Scholar 

  • Massa GD, Kim H-H, Wheeler RM et al (2008) Plant productivity in response to LED lighting. HortScience 43:1951–1956

    Google Scholar 

  • McCallum I, Wagner W, Schmullius C et al (2009) Satellite-based terrestrial production efficiency modeling. Carbon Balance Manag 4:8. doi:10.1186/1750-0680-4-8

    Article  PubMed  PubMed Central  Google Scholar 

  • Monteith JL (1972) Solar radiation and productivity in tropical ecosystems. J Appl Ecol 9:744–766

    Article  Google Scholar 

  • Monteith JL (2000) Fundamental equations for growth in uniform stands of vegetation. Agric For Meteorol 104:5–11

    Article  Google Scholar 

  • Mukherjee J, Singh G, Bal SK (2014) Radiation use efficiency and instantaneous photosynthesis at different growth stages of wheat (Triticum aestivum L.) in semi arid ecosystem of central Punjab, India. J Agrometeorology 16:69–77

    Google Scholar 

  • Müller-Linow M, Pinto-Espinosa F, Scharr H et al (2015) The leaf angle distribution of natural plant populations: assessing the canopy with a novel software tool. Plant Method 11:11. doi:10.1186/s13007-015-0052-z

    Article  Google Scholar 

  • Prusinkiewicz P, Lindenmayer A (1990) Graphical modeling using L-systems, in the algorithmic beauty of plants, part of the series the virtual laboratory. Springer, New York, pp 1–50

    Google Scholar 

  • Rosati A, Dejong TM (2003) Estimating photosynthetic radiation use efficiency using incident light and photosynthesis of individual leaves. Ann Bot 91:869–877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sands PJ (1999) 6.4.2 light use efficiency. In: Atwell BJ et al (eds) Plants in action. Macmillan Education Australia Pty Ltd, Melbourne, Available via DIALOG. http://plantsinaction.science.uq.edu.au/edition1/ofsubordinatedocument. Accessed 25 Dec 2015

    Google Scholar 

  • Shimizu H, Kushisa M, Fujinuma W (2008) A growth model for leaf lettuce under greenhouse environments. Environ Control Biol 46:211–219

    Article  Google Scholar 

  • Tei F, Scaife A, Aikman DP (1996) Growth of lettuce, onion, and red beet. 1. Growth analysis, light interception and radiation use efficiency. Ann Bot 78:633–643

    Article  Google Scholar 

  • Vos J, Evers JB, Buck-Sorlin GH et al (2010) Functional–structural plant modeling: a new versatile tool in crop science. J Exp Bot 61:2101–2115

    Article  CAS  PubMed  Google Scholar 

  • Yang Z-C, Kubota C, Chia P-L et al (2012) Effect of end-of-day far-red light from a movable LED fixture on squash rootstock hypocotyl elongation. Sci Hortic 136:81–86

    Article  Google Scholar 

  • Yokoi S, Kozai T, Ohyama K et al (2003) Effects of leaf area index of tomato seedling population on energy utilization efficiencies in a closed transplant production system. J SHITA 15:231–238 (in Japanese with English abstract)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuomi Ibaraki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Ibaraki, Y. (2016). Lighting Efficiency in Plant Production Under Artificial Lighting and Plant Growth Modeling for Evaluating the Lighting Efficiency. In: Kozai, T., Fujiwara, K., Runkle, E. (eds) LED Lighting for Urban Agriculture. Springer, Singapore. https://doi.org/10.1007/978-981-10-1848-0_11

Download citation

Publish with us

Policies and ethics