Skip to main content

Dynamical Similarity Analysis of EEG Recordings

  • Chapter
  • First Online:
Book cover Signal Processing in Neuroscience
  • 1779 Accesses

Abstract

Electroencephalogram (EEG) recordings contain a large amount of information about physiological and pathological processes in the brain and serve as one of the important tools in clinical diagnosis and research regarding epilepsy. Dynamical similarity analysis is applied to characterize EEG changes in different absence seizure states. The average similarity measure of a pair of EEG signals in the same seizure states and across different seizure states is calculated using an improved dynamical similarity method. The results show that the average similarity measures between EEG segments within the seizure-free state are close to 1, suggesting that the EEG segments within the seizure-free state share the same dynamic characteristics. The similarity measures between EEG segments across different seizure states are typically smaller, indicating that the changes of dynamic characteristics can be found during different absence seizure states.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Buzsaki G. Rhythms of the brain. Oxford: Oxford University Press; 2006.

    Book  Google Scholar 

  • Cao L. Practical method for determining the minimum embedding dimension of a scalar time series. Phys D. 1997;110:43–50.

    Article  Google Scholar 

  • Danober L, Deransart C, Depaulis A, et al. Pathophysiological mechanisms of genetic absence epilepsy in the rat. Prog Neurobiol. 1998;55:27–57.

    Article  CAS  PubMed  Google Scholar 

  • Ding M, Grebogi C, Ott E, Sauer T, Yorke J. Estimating correlation dimension from a chaotic time series: when does plateau onset occur? Phys D. 1993;69:404–24.

    Article  Google Scholar 

  • Eckmann J, Ruelle D. Fundamental limitation for estimating dimension and Lyapunov exponents in dynamical systems. Phys D. 1992;56:185–7.

    Article  Google Scholar 

  • Ferri R, Chiaramonti R, Elia M, Musumeci S, Ragazzoni A, Stam C. Nonlinear EEG analysis during sleep in premature and full-term infants. Clin Neurophysiol. 2003;114:1176–80.

    Article  PubMed  Google Scholar 

  • Fraser AM, Swinney HL. Independent coordinates for strange attractors from mutual information. Phys Rev A. 1986;33:1134–40.

    Article  Google Scholar 

  • Grassberger P, Procaccia I. Characterization of strange attractors. Phys Rev Lett. 1983;50:346–9.

    Article  Google Scholar 

  • Grassberger P, Schreiber T, Schaffrath C. Nonlinear time sequence analysis. Int J Bifurcation Chaos. 1991;1:521–47.

    Article  Google Scholar 

  • Gribkov D, Gribkova V. Learning dynamics from non-stationary time series: analysis of electroencephalograms. Phys Rev E. 2000;61:6538–45.

    Article  CAS  Google Scholar 

  • Jansen B, Rit V. Electroencephalogram and visual evoked potential generation in mathematical model of coupled cortical columns. Biol Cybern. 1995;73:357–66.

    Article  CAS  PubMed  Google Scholar 

  • Kim HS, Eykholt R, Salas JD. Nonlinear dynamics, delay times, and embedding windows. Phys D. 1999;127:48–60.

    Article  Google Scholar 

  • Lehnertz K, Elger C. Can epileptic seizures be predicted? Evidence from nonlinear time series analysis of brain electrical activity. Phys Rev Lett. 1998;80:5019–22.

    Article  CAS  Google Scholar 

  • Le Van Quyen M, Martinerie J, Baulac M, Varela F. Anticipating epileptic seizures in real time by a non-linear analysis of similarity between EEG recordings. NeuroReport. 1999;10:2149–55.

    Article  Google Scholar 

  • Li X, Ouyang G, Yao X. Dynamical characteristics of pre-epileptic seizures in rats with recurrence quantification analysis. Phys Lett A. 2004;333:164–71.

    Article  CAS  Google Scholar 

  • Lopes da Silva FH, Hoek A, Smith H, Zetterberg LH. Model of brain rhythmic activity. Kybernetik. 1974;15:27–37.

    Article  CAS  PubMed  Google Scholar 

  • Navarro V, Martinerie J, Le Van Quyen M, Clemenceau S, Baulac M, Adam C, Varela F. Seizures anticipation in human neocortical partial epilepsy. Brain. 2002;125:640–55.

    Article  PubMed  Google Scholar 

  • Packard N, Crutchfield J, Farmer J, Shaw R. Geometry from a time series. Phys Rev Lett. 1980;45(9):712–6.

    Article  Google Scholar 

  • Rabinovich M, Varona P, Selverston A, Abarbanel H. Dynamical principles in neuroscience. Rev Mod Phys. 2006;78:1213–65.

    Article  Google Scholar 

  • Rapp P, Zimmerman I, Alano A, Deguzman G, Greenbaum N. Experimental studies of chaotic neural behaviour cellular activity and electroencephalographic signal. In: Othmer H, editor. Nonlinear oscillations in biology and chemistry, Lecture notes in biomathematics. Berlin: Springer; 1985. p. 175–205.

    Google Scholar 

  • Rogowski Z, Gath I, Bental E. On the prediction of epileptic seizures. Biol Cybern. 1981;42:9–15.

    Article  CAS  PubMed  Google Scholar 

  • Sarkara M, Leong T. Characterization of medical time series using fuzzy similarity-based fractal dimensions. Artif Intell Med. 2003;27:201–22.

    Article  Google Scholar 

  • Schreiber T, Schmitz A. Classification of time series data with nonlinear similarity measures. Phys Rev Lett. 1997;78:1475–8.

    Article  Google Scholar 

  • Stacey W, Litt B. Technology insight: neuroengineering and epilepsy-designing devices for seizure control. Nat Clin Pract Neurol. 2008;4:190–201.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stam C. Nonlinear dynamical analysis of EEG and MEG: review of an emerging field. Clin Neurophysiol. 2005;116(10):2266–301.

    Article  CAS  PubMed  Google Scholar 

  • Takens F. In: Rand DA, Young LS, editors. Dynamical systems and turbulence, Lecture notes in mathematics. Berlin: Springer; 1981. p. 336.

    Google Scholar 

  • Thiel M, Romano M, Kurths J. Influence of observational noise on the recurrence quantification analysis. Phys D. 2002;171:138–52.

    Article  Google Scholar 

  • Wendling F, Bellanger JJ, Bartolomei F, Chauvel P. Relevance of nonlinear lumped-parameter models in the analysis of depth-EEG epileptic signals. Biol Cybern. 2000;83:367–78.

    Article  CAS  PubMed  Google Scholar 

  • Widman G, Schreiber T, Rehberg B, Hoeft A, Elger C. Quantification of depth of anesthesia by nonlinear time series analysis of brain electrical activity. Phys Rev E. 2000;62:4898–903.

    Article  CAS  Google Scholar 

  • Wolf A, Swift JB, Swinney HL, et al. Determining Lyapunov exponents from a time series. Phys D. 1985;16:285–317.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaoxiang Ouyang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Ouyang, G., Li, X. (2016). Dynamical Similarity Analysis of EEG Recordings. In: Li, X. (eds) Signal Processing in Neuroscience. Springer, Singapore. https://doi.org/10.1007/978-981-10-1822-0_7

Download citation

Publish with us

Policies and ethics